BDI

BDI

ข่าวและบทความที่เกี่ยวข้อง

All BDI

PostType Filter En

บทความ

ความท้าทายในงานจดหมายเหตุเมื่อเข้าสู่ยุค Big Data: ตอนที่ 3 การใช้ประโยชน์ข้อมูลงานจดหมายเหตุ (Data Utilization)
ความท้าทายงานจดหมายเหตุเมื่อเข้าสู่ยุค Big Dataตอนที่ 1. ความหมายของจดหมายเหตุตอนที่ 2. การทำให้เป็นดิจิทัลของเอกสารจดหมายเหตุตอนที่ 3. การใช้ประโยชน์ข้อมูลงานจดหมายเหตุ (ท่านกำลังอ่านบทความนี้) จาก 4 ประเด็นความท้าทายในงานจดหมายเหตุ ในบทความตอนที่ 2 ได้พูดถึงประเด็นความท้าทาย 2 ประเด็นแรกเป็นที่เรียบร้อยแล้ว ซึ่งเกี่ยวข้องกับการทำเอกสารให้อยู่รูปแบบดิจิทัล (Digitization) ซึ่งชี้ให้เห็นว่ากระบวนการทั้งระบบในการเก็บเอกสารให้อยู่ในรูปแบบดิจิทัลจะต้องทำอย่างไรบ้าง บทความนี้จึงต้องการให้เห็นถึงการใช้ประโยชน์ข้อมูลจดหมายเหตุเป็นกรณีศึกษาทั้งในหอจดหมายเหตุและนอกหอจดหมายเหตุ ซึ่งสามารถปรับใช้ทฤษฎีทางจดหมายเหตุและการบริหารจัดการข้อมูลกับองค์กรได้ และความท้าทายอื่น ๆ ที่เกี่ยวข้องกับงานจดหมายเหตุที่ยังไม่ได้กล่าวถึงในบทความตอนที่ 2 การจัดการและหาข้อมูลเชิงลึกในเอกสารจดหมายเหตุในปัจจุบัน เนื่องจากเอกสารจดหมายเหตุในปัจจุบันมีความหลากหลายและมีจำนวนที่มาก การเตรียมการทางสถาปัตยกรรมข้อมูลสำหรับเอกสารเหล่านี้จึงเป็นเรื่องที่สำคัญเป็นอย่างยิ่ง ซึ่งในบริบทของประเทศไทย ทางเราได้มีการจัดทำระเบียบวิธีวิจัยดังภาพที่ 1 ซึ่งสามารถแบ่งออกได้เป็น 2 ส่วนการวิจัย คือ ความท้าทายในการเข้าถึงข้อมูลเพื่องานด้านสังคมศาสตร์และมนุษยศาสตร์ จากการให้ข้อมูลผ่านแบบสอบถามประกอบกับประสบการณ์การเข้าใช้ของผู้เขียน จึงสามารถประกอบออกมาเป็นความท้าทายออกมาได้ดังนี้ นอกจากนี้ยังมีความท้าทายอื่น เช่น ข้อมูลในอินเทอร์เน็ต หรือ ข้อมูลจากฐานข้อมูลขององค์กรซึ่งเป็น Digital-born (ข้อมูลที่เป็นดิจิทัลมาตั้งแต่เริ่มต้น) ไม่ครอบคลุมเมื่อเทียบกับที่มีอยู่ในสถานที่จริง หรือ แม้แต่ความหลากหลายของชนิดเอกสารที่จัดเก็บซึ่งมีความท้าทายในกระบวนการ digitization, การจัดเก็บข้อมูลดิจิทัลเหล่านั้น และการเก็บรักษาเอกสารต้นฉบับให้คงอยู่ได้นานที่สุดอีกด้วย ความท้าทายเชิงเทคนิคเพื่อสัมฤทธิ์ผลความต้องการของผู้ใช้ จากการอนุเคราะห์ข้อมูลและคำสัมภาษณ์ตามส่วนที่ 2 ที่ระบุในระเบียบวิธีวิจัย รวมถึงการศึกษางานวิจัยที่เกี่ยวข้องกับการจัดการข้อมูลจดหมายเหตุ พบว่าความท้าทายในเชิงเทคนิคสามารถแบ่งออกมาได้เป็น 3 รูปแบบ คือ 1. การค้นหาเอกสารด้วยเนื้อหาและความหมายภายในเอกสารนั้น (Semantic Search) นับตั้งแต่ พ.ศ. 2550 (ค.ศ. 2007) เป็นต้นมา แนวคิดวิทยาการเปิดเผย (Open Science) ได้ถูกนำมาพูดถึงและปฏิบัติใช้ในวงการวิจัยและแพร่กระจายไปยังวงการอื่น ๆ รวมถึงการทำข้อมูลเปิดเผยอีกด้วย ซึ่งโครงสร้างและความเชื่อมโยงของแนวคิดวิทยาการเปิดเผยเป็นไปตามภาพที่ 2 โดยแนวคิดแกนหลักของวิทยาการเปิดเผยจะมีวัตถุประสงค์เพื่อเพิ่มความโปร่งใสในกระบวนการวิจัย นับตั้งแต่กระบวนการทำวิจัย การบริหารจัดการงานวิจัย ไปจนถึงการบริหารข้อมูลที่มาจากงานวิจัย ในปัจจุบัน เนื่องจากข้อมูลนั้นเพิ่มขึ้นมาเป็นจำนวนมาก การบริหารจัดการข้อมูลเพื่อทำให้สามารถเพิ่มศักยภาพในการค้นพบความรู้ใหม่และนวัตกรรมเป็นสิ่งที่จำเป็นอย่างยิ่ง จึงทำให้ Wilkinson, et al. (2016) ได้สรุปหลักการพื้นฐานที่ทำให้การบริหารจัดการข้อมูลเป็นไปอย่างมีประสิทธิภาพ คือ Findable-Accessible-Interoperable-Reusable (FAIR Principles) ซึ่งเจาะจงไปที่ตัวข้อมูลและเมตาเดตาให้มีรายละเอียดอธิบายที่มากเพียงพอให้สามารถค้นหาได้ เปิดเผย และเป็นมาตรฐาน Hawkins (2022) ได้ระบุว่าการทำให้ผู้ศึกษาวิจัยสามารถค้นคว้าข้อมูลในเชิงความหมาย (Semantic Search) สามารถยกระดับความเร็วในการค้นพบความรู้สู่การเป็นวิทยาการใหม่หรือแนวทางการศึกษาแบบใหม่ให้กับผู้ศึกษาวิจัยที่เกี่ยวข้องกับสาขาวิชานั้นมากขึ้น โดยพื้นฐานโครงสร้างหลักจะแบ่งออกเป็น 4 องค์ประกอบหลักดังภาพที่ 3 คือ โครงสร้างพื้นฐานทางข้อมูล (Data Infrastructure) ชั้นภววิทยา (Ontological Layer) ชั้นจัดการตรรกะ (Unifying Logic Layer) และชั้นพิสูจน์ข้อเท็จจริง (Proof Layer) โดยชั้นที่มีความท้าทายในการทำงานที่สุด คือ ชั้นจัดการตรรกะและชั้นพิสูจน์ข้อเท็จจริง แต่อย่างไรนั้น การสร้างแพลตฟอร์มที่สามารถค้นหาบริบทอย่างชาญฉลาดดังที่กล่าวไว้ ข้อมูลเป็นสิ่งที่จำเป็น ซึ่งข้อมูลดังกล่าวมีความเป็นไปได้ทั้งเป็น Digital-born และ Non-digital-born Documents โดยจากที่พูดถึงในตอนที่ 2 เรื่อง Digitalization นั้นจะเห็นถึงปัญหาในการแกะตัวอักษรทั้งด้วยเทคโนโลยีและโบราณคดี หากสรุปโดยง่าย เราสามารถทำ Digitization ได้ด้วย OCR อย่างที่ผู้เขียนได้ทำไว้ในภาพที่ 4 ซึ่งหากยังไม่มีข้อมูลที่เพียงพอในการทำการวิเคราะห์ผล การทำให้มีข้อมูลอย่างเช่นการนำเข้าข้อมูลเอกสารจริงเป็นรูปแบบดิจิทัลเป็นปัจจัยที่จำเป็นอย่างยิ่ง 2. การสืบประวัติการแก้ไขของเอกสารทางกฎหมาย นอกจากนี้แล้ว ประเด็นที่น่าสนใจอีกหนึ่งอย่างจากที่ได้ข้อมูลมาจากผู้เชี่ยวชาญ คือ การสืบประวัติการแก้ไขของเอกสารทางกฎหมาย ซึ่งมีลักษณะคล้ายกับ Git Version Control System โดยในเบื้องต้น การทำให้เห็นการชำระและปรับปรุงกฎหมายเป็นสิ่งที่รัฐหลายประเทศทำ เช่น สหราชอาณาจักร หรือ สหรัฐอเมริกาใน District of Columbia ซึ่งทำให้เห็นถึงการเปลี่ยนแปลงและตีความกฎหมายได้อย่างเป็นระบบมากยิ่งขึ้น ประการหนึ่ง คือ การทำให้เห็นเป็นที่ประจักษ์ว่าศัพท์ทางกฎหมายหนึ่ง ๆ มีบริบทความหมายว่าอย่างไร 3. การจัดการเอกสารจดหมายเหตุด้วยกฎเกณฑ์การจำแนกเอกสาร (Document Classification) ในทางงานจัดการบันทึกเอกสารและจัดการจดหมายเหตุ กฎเกณฑ์การจำแนกเอกสารเป็นสิ่งที่จำเป็นอย่างยิ่งเพื่อทำให้ผู้ค้นคว้าสามารถหยิบหาได้ง่ายยิ่งขึ้นและเห็นภาพรวมของการจัดเก็บเอกสารยิ่งขึัน ซึ่งในงานจัดการบันทึกเอกสารและงานทางจดหมายเหตุจะมีหลักการคิดไม่เหมือนกันดังภาพที่ 5 ซึ่งหลักการในการจัดการเอกสารบันทึกนั้นจะเน้นการใช้งานที่ทำให้องค์กร สะดวกในการทำงานตามภารกิจขององค์กรที่สุด โดยจะเริ่มแบ่งขั้นตอนตามหน้าที่ขององค์กร แล้วลงมาที่กิจกรรมซึ่งทำให้วัตถุบรรลุวัตถุจุดประสงค์นั้น โครงการ และชิ้นงานเอกสารตามลำดับ แต่หากพูดถึงมาตรฐาน ISAD(G) ซึ่งเป็นมาตรฐานในการจัดการเอกสารจดหมายเหตุหรือการจัดเก็บข้อมูลถาวร โจทย์ประธานของมาตรฐานนี้จึงเป็นวัตถุประสงค์ในการสืบสาวความเป็นมาและเหตุในการกระทำเชิงประวัติ การจัดมาตรฐานจึงจำเป็นต้องแบ่งตามหัวข้อที่ชี้ให้เห็นถึงเหตุการณ์สำคัญขององค์กร อย่างไรก็ตาม Payne (2018) และนักวิจัยอื่น ๆ ที่เกี่ยวข้อง ได้เล็งเห็นถึงอิทธิพลสำคัญของขนาดของข้อมูลที่เพิ่มขึ้นมาอย่างมีนัยสำคัญ จึงทำให้เกิดวิทยาการใหม่อย่าง “วิทยาการจดหมายเหตุเชิงคำนวณ (Computational Archival Sciences)” ซึ่งเห็นว่าการนำวิทยาการคอมพิวเตอร์มาใช้ในการจัดการเอกสารจดหมายเหตุ ทั้งในมิติของการทำให้เห็นความสัมพันธ์ระหว่างมนุษย์ เทคโนโลยี และสังคม การเก็บรักษาเอกสารระยะยาว และประกอบสร้างซึ่งข้อเท็จจริงให้มีความคงเส้นคงวามากขึ้นผ่านเทคโนโลยี ตัวอย่างหนึ่งที่ทำให้เห็นว่าบทบาทของแบบจำลองการเรียนรู้ของเครื่อง ซึ่ง Franks (2022) ได้ใช้แบบจำลองการเรียนรู้ 3 ประเภท คือ Machine Learning Model กับ TF-IDF ปกติ Neural Networks และ Language Model ในการคัดแยกหมวดหมู่ของเอกสารในองค์กร Australian Human Rights Commission ที่มีจำนวนบทความทั้งสิ้น 6,217 บทความใน 29 กลุ่มชุดของเอกสาร พบว่าความถูกต้องในการจัดหมวดหมู่เอกสารอยู่ที่ประมาณ 67-88% และมีความแม่นยำ 54-81% ซึ่งร้อยละจะแปรผันตามประเภทของแบบจำลองที่ใช้ การ Resampling จากความไม่สมดุลของจำนวนข้อมูลในแต่ละประเภท (Imbalanced Data) และจำนวนของข้อมูลในแต่ละประเภท นอกจากนี้ เมื่อสามารถจัดหมวดหมู่ของเอกสารได้แล้ว แบบจำลองการเรียนรู้ของเครื่องอื่น ๆ ยังสามารถสร้างคำอธิบายให้กับคลังจดหมายเหตุ, การตอบคำถามจากสารานุกรม, และการสรุปสาระสังเขป โดย Generative AI อย่าง ChatGPT สามารถทำงานเหล่านี้ได้ หากมีการปรับปรุงแบบจำลองให้มีความจำเพาะกับบริบทที่สนใจ เช่น WangchanBERTa ซึ่งก็จะย้อนไปตอบคำถามในส่วนแรกที่เกี่ยวข้องกับการค้นหาข้อมูลเชิงความหมาย ทว่าแบบจำลองเหล่านี้ยังคงสร้างข้อมูลที่ไม่มีอยู่จริงและขัดแย้งกับข้อเท็จจริงที่มนุษย์ทราบ (Hallucination) และยังต้องใช้ทรัพยากรการคำนวณที่ค่อนข้างมาก จึงยังคงเป็นความท้าทายอยู่ในปัจจุบันนี้ การตีความผลการวิเคราะห์จากเอกสารจดหมายเหตุ สามารถอ่านได้เพิ่มเติมที่ Critical Questions for Archives as (Big) Data (core.ac.uk) หากเรามองว่าเอกสารจดหมายเหตุเป็นข้อมูลที่ถูกนำมาใช้ในการวิเคราะห์ได้นั้น การทำ data analytics สามารถกระทำได้โดยนักวิทยาศาสตร์ข้อมูลและผู้เชี่ยวชาญทางการคำนวณอื่น ๆ เพื่อแสดงให้เห็นถึงผลสัมฤทธิ์จากโจทย์ปัญหาโดยมีเอกสารจดหมายเหตุเป็นข้อมูลตัวตั้ง ชะรอยผู้เชี่ยวชาญเหล่านี้อาจไม่ได้มีความรู้ที่เกี่ยวข้องกับเอกสารsหรือโจทย์ที่เกี่ยวข้อง ซึ่งเป็นปกติในงานทางวิทยาศาสตร์ข้อมูลที่จะมีผู้เชี่ยวชาญด้านอื่น ๆ มาช่วยพิจารณาความสมเหตุสมผลในการวิเคราะห์ข้อมูลจากนักวิทยาศาสตร์ข้อมูล การวิเคราะห์ข้อมูลตามโจทย์ปัญหาที่ตั้งไว้นับตั้งแต่กระบวนการคิดโจทย์ไปจนถึงกระบวนการตอบคำถามและอภิปรายผล ย่อมมีปรัชญาที่แทรกซึมอยู่ภายในปัญหาเหล่านั้นเสมอ หากได้เป็นตั้งแต่การวิเคราะห์ประวัติศาสตร์ ไปจนถึงการค้นหาความจริงของโลก ซึ่งเป็นสิ่งที่ ณ...
6 September 2023

ข่าว

BDI นำทัพทีม Health link แถลงข่าวความก้าวหน้าโครงการ Health Link พร้อมสาธิตระบบเชื่อมโยงข้อมูลการรักษาสุขภาพ
25 สิงหาคม 2566, ศูนย์การประชุมแห่งชาติสิริกิติ์ – สถาบันข้อมูลขนาดใหญ่ (องค์การมหาชน) (BDI) จับมือกับหน่วยงานในโครงการ Health Link แถลงข่าวความก้าวหน้าการพัฒนาระบบเชื่อมโยงข้อมูลผู้ป่วยระหว่างโรงพยาบาลทั่วประเทศ พร้อมสาธิตระบบเชื่อมโยงข้อมูลการรักษาสุขภาพ พร้อมเผยข้อมูลล่าสุด มีสถานพยาบาลเข้าร่วมโครงการมากกว่า 1,100 แห่งแล้ว พร้อมเดินหน้าพัฒนาระบบอย่างต่อเนื่อง ในการนำข้อมูลไปใช้เพื่อเพิ่มคุณภาพการบริการด้านการแพทย์และสาธารณสุขผ่านเทคโนโลยีดิจิทัล อีกทั้งยังคงส่งเสริมให้ประชาชนสมัครบริการ Health Link ในช่องทางต่าง ๆ เช่น ผ่านแอปพลิเคชันเป๋าตัง ThaID (ไทยดี) ฯลฯ เพื่อให้ความยินยอมแก่โรงพยาบาล ในการส่งต่อข้อมูลสุขภาพเข้าสู่ระบบ Health Link เพื่อเชื่อมต่อเข้าสู่ฐานข้อมูลขนาดใหญ่ในด้านสุขภาพนี้ ถือเป็นการพลิกโฉมการให้บริการประชาชนและระบบบริหารจัดการด้านสาธารณสุขอย่างเต็มรูปแบบ โดยในครั้งนี้มีนายชัยวุฒิ ธนาคมานุสรณ์ รัฐมนตรีว่าการกระทรวงดิจิทัลเพื่อเศรษฐกิจและสังคม ได้เป็นประธานกล่าวเปิดงาน และ รองศาสตราจารย์ ดร.ธีรณี อจลากุล ผู้อำนวยการสถาบันข้อมูลขนาดใหญ่ (องค์การมหาชน) (BDI) ได้กล่าวถึงความท้าทายของบริการด้านสาธารณสุขไทย ซึ่งเริ่มต้นจากระบบฐานข้อมูลที่ยังไม่เชื่อมถึงกัน เพราะโรงพยาบาลแต่ละแห่งจัดเก็บข้อมูลผู้ป่วยในรูปแบบข้อมูลที่ต่างกัน จึงเป็นเรื่องยากในการแลกเปลี่ยนข้อมูล แต่ด้วยเทคโนโลยีดิจิทัลได้เข้ามาเปลี่ยนเรื่องยากให้เป็นเรื่องง่ายขึ้น ภายใต้การดำเนินงานของ BDI หรือสถาบันข้อมูลขนาดใหญ่ (องค์การมหาชน) ที่พัฒนาระบบเชื่อมต่อข้อมูลผู้ป่วยระหว่างโรงพยาบาล หรือ Health Link ซึ่งผู้ป่วยไม่จำเป็นต้องแจ้งประวัติใหม่ในการรักษาทุกครั้ง ช่วยประหยัดในเรื่องของเวลา และลดขั้นตอนการทำงานของแพทย์ อีกทั้งได้รับฟังความรู้เกี่ยวกับระบบเชื่อมโยงข้อมูลการรักษาสุขภาพมุ่งประโยชน์สูงสุดให้ประชาชน โดยนายแพทย์ธนกฤต จินตวร รักษาการผู้อำนวยการสถาบันข้อมูลขนาดใหญ่ (องค์การมหาชน) (BDI) รวมถึงการเสวนาอีกมากมายจากนายแพทย์อีกหลายท่านในโครงการ โดยงานนี้มีผู้เข้าร่วมงานจากกระทรวงดิจิทัลเพื่อเศรษฐกิจและสังคม กระทรวงสาธารณสุข กระทรวงการอุดมศึกษา วิทยาศาสตร์ วิจัยและนวัตกรรม กระทรวงกลาโหม กรุงเทพมหานคร และอีกหลากหลายหน่วยงานในเครือข่าย Health Link รวมกว่า 300 แห่งทั่วประเทศ สำหรับประชาชนผู้สนใจสามารถเข้าร่วมในระบบ Health Link ได้ง่าย ๆ เพียงแค่ยินยอมให้โรงพยาบาลส่งต่อข้อมูลประวัติการรักษาของท่านเข้าสู่ระบบได้ ด้วยการลงทะเบียนสมัคร Health Link ได้ฟรี ในแอปพลิเคชันเป๋าตัง โดยดูวิธีการสมัครที่นี่ https://bit.ly/3VyBt5U หรือสมัครผ่านทางเว็บไซต์ www.healthlink.go.th/portal โดยยืนยันตัวตนผ่านแอปพลิเคชัน ThaiD ของกรมการปกครอง
PDPA Icon

We use cookies to optimize your browsing experience and improve our website’s performance. Learn more at our Privacy Policy and adjust your cookie settings at Settings

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as needed, except for necessary cookies.

Accept all
Manage Consent Preferences
  • Strictly Necessary Cookies
    Always Active

    This type of cookie is essential for providing services on the website of the Personal Data Protection Committee Office, allowing you to access various parts of the site. It also helps remember information you have previously provided through the website. Disabling this type of cookie will result in your inability to use key services of the Personal Data Protection Committee Office that require cookies to function.
    Cookies Details

  • Performance Cookies

    This type of cookie helps the Big Data Institute (Public Organization) understand user interactions with its website services, including which pages or areas of the site are most popular, as well as analyze other related data. The Big Data Institute (Public Organization) also uses this information to improve website performance and gain a better understanding of user behavior. Although the data collected by these cookies is non-identifiable and used solely for statistical analysis, disabling them will prevent the Big Data Institute (Public Organization) from knowing the number of website visitors and from evaluating the quality of its services.

  • Functional Cookies

    This type of cookie enables the Big Data Institute (Public Organization)’s website to remember the choices you have made and deliver enhanced features and content tailored to your usage. For example, it can remember your username or changes you have made to font sizes or other customizable settings on the page. Disabling these cookies may result in the website not functioning properly.

  • Targeting Cookies

    "This type of cookie helps the Big Data Institute (Public Organization) understand user interactions with its website services, including which pages or areas of the site are most popular, as well as analyze other related data. The Big Data Institute (Public Organization) also uses this information to improve website performance and gain a better understanding of user behavior. Although the data collected by these cookies is non-identifiable and used solely for statistical analysis, disabling them will prevent the Big Data Institute (Public Organization) from knowing the number of website visitors and from evaluating the quality of its services.

Save settings
This site is registered on wpml.org as a development site. Switch to a production site key to remove this banner.