Prompt Engineering

Prompt Engineering

ข่าวและบทความที่เกี่ยวข้อง

Related news and articles

PostType Filter En

บทความ

สายมูยุค AI: เคล็ดลับเขียน Prompt พิมพ์คำสั่งอย่างไรให้ได้คำทำนายที่ตรงจุด 
ในยุคที่เทคโนโลยี AI ก้าวหน้าอย่างรวดเร็ว หลายคนเริ่มนำ AI มาใช้ในหลากหลายด้าน จากบทความที่แล้ว “AI ทำนายทายทัก: การประยุกต์ใช้ Big Data และปัญญาประดิษฐ์ (AI) ในการพยากรณ์อนาคต” หนึ่งในนั้นคือ “การดูดวง” มาบทความนี้ เราจะมาเรียนรู้ข้อแนะนำเบื้องต้นในการเขียนคำสั่ง (prompt) ให้ Generative AI หรือที่เราเรียกกันย่อ ๆ ว่า Gen AI ช่วยวิเคราะห์จากข้อมูลพื้นฐาน พร้อมข้อควรระวัง ในการใช้ prompt สำหรับงานดูดวงด้วย AI โดยอ้างอิงแหล่งต่าง ๆ ที่น่าเชื่อถือ เพื่อให้คุณสามารถเริ่มต้นใช้งานได้อย่างมั่นใจ เพราะหาก prompt คลุมเครือหรือไม่มีโครงสร้างชัดเจน ผลลัพธ์ที่ได้อาจไม่ถูกใจหรือไม่สมเหตุสมผล  ก่อนอื่นขออธิบายความหมายของ Prompt ก่อน Prompt คือ คำสั่งหรือข้อความที่ผู้ใช้ป้อนเข้าไปให้ Gen AI เพื่อให้ AI สร้างผลลัพธ์ตามที่เราต้องการ Prompt ที่ดีจะช่วยให้ AI ตีความความต้องการของเราได้แม่นยำและตรงจุดมากขึ้น โดยทั่วไปแล้ว โครงสร้าง Prompt ที่ดีมักประกอบด้วยองค์ประกอบต่าง ๆ ดังนี้  การใส่องค์ประกอบเหล่านี้ช่วยลดความกำกวมของ prompt และช่วยให้ผลลัพธ์ใกล้เคียงกับสิ่งที่เราต้องการมากที่สุด นอกจากนี้ยังมีเทคนิคอื่น ๆ ที่ช่วยให้ผลลัพธ์ดีขึ้น ดังนี้  1. การระบุศาสตร์การดูดวง โลกของการดูดวงมีหลายศาสตร์ เช่น ไพ่ทาโรต์ โหราศาสตร์ไทย โหราศาสตรจีน  ถ้า prompt ระบุล่วงหน้าว่า “ใช้โหราศาสตร์ไทย” หรือ “วิเคราะห์โดยใช้ไพ่ยิปซี” จะช่วยให้ AI เลือกวิธีการวิเคราะห์ที่ตรงกับความต้องการของเราได้ดีกว่า  2. การให้ข้อมูลพื้นฐานที่เพียงพอ AI ต้องการข้อมูลเข้า (input) ที่เพียงพอ เช่น วันเดือนปีเกิด เวลาเกิด สถานที่เกิด หรือข้อมูลเสริม เช่น ช่วงเวลาที่สำคัญในชีวิต ถ้าป้อนข้อมูลไม่ครบ หรือคลุมเครือ AI อาจเดาและให้คำตอบผิดพลาด  3. การกำหนดช่วงเวลาทำนาย ระบุว่าอยากทำนายเป็น รายวัน รายเดือน รายปี หรือ 5 ปีข้างหน้า เช่น “ช่วยให้วิเคราะห์ดวงประจำปี 2025”  4. การตั้งข้อจำกัดหรือหลีกเลี่ยงเนื้อหาที่อ่อนไหว เช่น “ไม่ทำนายเรื่องการเมือง” หรือ “ไม่แนะนำการรักษาทางการแพทย์” เพื่อหลีกเลี่ยงการให้คำแนะนำที่ควรได้รับจากผู้เชี่ยวชาญ  5. การแก้ไข prompt (Prompt Iteration) เมื่อ AI ตอบมาแล้ว ถ้าผลลัพธ์ยังไม่ตรงใจ ให้ Prompt ปรับคำสั่งเพิ่มเติม เช่น “ให้เจาะลึกเพิ่มในเรื่องการเงิน” หรือ “ลดการใช้ภาษาพูดแบบอุปมา” นี่คือแนวคิดการแก้ไข prompt ที่มักพูดถึงในคู่มือ Prompting Frameworks  6. การ prompt ให้ Gen AI อธิบายเหตุผล ประกอบคำทำนาย เช่น “นอกจากทำนายแล้ว ช่วยอธิบายที่มาที่ไปของคำทำนายนั้น ๆ ด้วย” จะเพิ่มความโปร่งใส และช่วยให้ผู้ใช้เข้าใจ logic ที่ AI ใช้  ต่อไป จะเป็นตัวอย่าง Prompt สำหรับดูดวง ที่สามารถนำไปใช้หรือปรับแต่งกับ Gen AI  เช่น ChatGPT เป็นต้น ซึ่งผู้อ่านสามารถปรับแต่งให้สั้น ยาว หรือเพิ่มเงื่อนไขย่อยได้ตามต้องการ  ตัวอย่าง 1 “คุณคือหมอดูโหราศาสตร์ไทยผู้เชี่ยวชาญ ช่วยวิเคราะห์ดวงชะตาของฉันตามวันที่เกิด 15 สิงหาคม 2530 เวลาเกิด 13:45 และสถานที่เกิด กรุงเทพฯ ในปี 2025 โดยแยกคำทำนายสำหรับเรื่องการงาน การเงิน ความรัก สุขภาพ พร้อมคำแนะนำที่เป็นไปได้ได้ 3 ข้อ และอธิบายที่มาของคำทำนายด้วย”  ตัวอย่าง 2 “ใช้ศาสตร์ไพ่ยิปซี ทำนายดวงรายเดือนของฉันสำหรับเดือนหน้า (เดือนมกราคม ปี 2026) โดยให้ผลลัพธ์เป็น 3 เรื่องใหญ่ที่ควรระวัง พร้อมแนวทางแก้ไข และเหตุผลประกอบคำตอบ”  ตัวอย่าง 3 “คุณคือโหราจารย์จีน ช่วยวิเคราะห์ดวงชะตาตามปีนักษัตร ฉันเกิดปีมะเส็ง 2532 ช่วงชีวิตปีหน้า (2569) ให้คำทำนายในเรื่องการงาน-โชคลาภ-สุขภาพ พร้อมเลขมงคลและสีมงคลที่ควรใช้”  โดยสรุปข้อแนะนำเบื้องต้นการเขียน Prompt สำหรับการดูดวงด้วย Gen AI คือ ควร prompt ตามโครงสร้าง prompt ที่ดี ได้แก่ งานที่อยากให้ AI ทำ (Task) ข้อมูลพื้นฐาน (Background) บทบาทของ AI (Role) รูปแบบผลลัพธ์ที่ต้องการ (Format) และข้อจำกัดเพิ่มเติม (Constraints) เพื่อช่วยให้ผลลัพธ์ใกล้เคียงกับที่เราคาดหวัง นอกจากนี้การแก้ไข prompt (Prompt Iteration) หลังจากได้รับผลลัพธ์แล้วเป็นสิ่งสำคัญ เพิ่มให้ได้คำทำนายตรงความต้องการมากยิ่งขึ้น สุดท้ายนี้ การดูดวง ไม่ว่าจะเป็นดูกับหมอดูหรือกับ Gen AI เราควรมีวิจารณญาณ ไม่ยึดคำทำนายเป็นความจริง และไม่ใช้ AI แทนคำปรึกษาวิชาชีพ  แหล่งอ้างอิง 
20 October 2025

บทความ

Meta Prompting: ใช้ AI ช่วยสร้างคำสั่งให้ AI ทำงานเก่งขึ้น 
ทุกวันนี้ เราใช้ AI อย่าง ChatGPT, Claude, หรือ DeepSeek ช่วยทำงานได้หลายอย่าง ไม่ว่าจะเขียนบทความ ตอบคำถาม หรือช่วยคิดวิเคราะห์ข้อมูลต่าง ๆ แต่การจะ “สั่ง” Artificial Inteligence (AI) ให้ทำงานได้ตรงใจนั้นไม่ใช่เรื่องง่าย เพราะบางที AI ก็ให้คำตอบที่ไม่ตรงตามความต้องการ ทำให้เราต้องเสียเวลาแก้คำสั่งซ้ำไปซ้ำมา ซึ่งบทความนี้ผู้เขียนจะแนะนำเทคนิค “เมตาพรอมต์ติ้ง” หรือ Meta Prompting ที่จะให้ AI มาช่วยเราสร้างและปรับปรุง “คำสั่ง” ให้ดีขึ้นไปอีก  Meta Prompting คืออะไร?  Meta Prompting เป็นเทคนิคหนึ่งในการออกแบบคำสั่ง (Prompt Engineering) โดยเราจะใช้ AI มาช่วยสร้างหรือปรับปรุงชุดคำสั่ง แทนที่เราจะต้องคิดคำสั่งเองทั้งหมด เราก็ให้ AI ช่วยคิดโครงสร้าง เนื้อหา หรือแม้แต่ปรับปรุงคำสั่งเดิม ทำให้เราทำงานที่ซับซ้อน ได้ง่ายขึ้น และปรับตัวตามสถานการณ์ต่างๆ ได้ดีขึ้นด้วย  ทำไมต้องใช้ Meta Prompting?  วิธีการของ Meta Prompting   บทความนี้จะแนะนำตัวอย่างการทำ Meta Prompting 3 วิธี ดังนี้  1. Meta-Prompting  รูปที่ 1 รูปแบบการทำงานของ Meta-Prompting [1]  หลักการการทำงาน คือ การสร้าง “คำสั่งหลัก” ที่ทำหน้าที่เหมือน “ผู้จัดการโครงการ” โดยคอยแบ่งงานย่อย ๆ ให้ “คำสั่งย่อย” ที่ทำหน้าที่เหมือน “ผู้เชี่ยวชาญ” ในแต่ละด้าน เช่น “ผู้เชี่ยวชาญด้านการตลาด”, “ผู้เชี่ยวชาญด้านการเขียนโปรแกรม” แล้วค่อยรวบรวมผลลัพธ์ สามารถอ่านรายละเอียดเพิ่มเติมได้ที่ https://arxiv.org/pdf/2401.12954   ขั้นตอนการทำงาน:  ตัวอย่างการใช้งาน:  “`  คุณคือ Meta-Expert ผู้เชี่ยวชาญด้านการวางแผนงานอีเวนต์ สามารถทำงานร่วมกับผู้เชี่ยวชาญอื่น ๆ ได้ เพื่อจัดงานเลี้ยงบริษัทให้สมบูรณ์แบบ คุณสามารถเรียกใช้ผู้เชี่ยวชาญด้านต่าง ๆ ได้แก่ “เชฟมืออาชีพ”, “นักตกแต่งสถานที่”, และ “นักวางแผนกิจกรรม”  ในการเรียกผู้เชี่ยวชาญ ให้พิมพ์ชื่อตามด้วย “:” เช่น:  เชฟมืออาชีพ: แนะนำเมนูอาหารสำหรับงานเลี้ยงบริษัท 100 คน เน้นอาหารไทย มีตัวเลือกสำหรับคนทานมังสวิรัติ และคนแพ้อาหารทะเล  นักตกแต่งสถานที่: ออกแบบการตกแต่งสำหรับงานเลี้ยงบริษัทในธีม “รื่นเริงริมทะเล” ใช้งบประมาณไม่เกิน 50,000 บาท  นักวางแผนกิจกรรม: จัดกิจกรรมสันทนาการ 3 กิจกรรมสำหรับพนักงานบริษัท เน้นกิจกรรมที่ส่งเสริมความสามัคคี และสนุกสนาน  “`  2. Learning from Contrastive Prompts  หลักการการทำงาน คือ การให้ AI เปรียบเทียบ “คำสั่งที่ดี” (ที่สามารถให้ผลลัพธ์ตรงตามความต้องการ) กับ “คำสั่งที่ไม่ดี” เพื่อเรียนรู้ว่าอะไรใช้ได้ผลและอะไรใช้ไม่ได้ผล แล้วสามารถสร้างคำสั่งใหม่ที่ดีกว่าเดิม สามารถอ่านรายละเอียดเพิ่มเติมได้ที่ https://arxiv.org/pdf/2409.15199  ขั้นตอนการทำงาน:  รูปแบบการใช้งาน  “`  โจทย์: {{ Question }}  กำหนดอินพุต: {{ Input }}  และเอาต์พุตที่คาดหวัง: {{ Output }}  อธิบายเหตุผลว่าเหตุใดอินพุตจึงสอดคล้องกับเอาต์พุตที่คาดหวัง จากนั้นใช้เหตุผลดังกล่าวสร้างพรอมต์เพื่อให้ได้เอาต์พุตที่คาดหวังจากอินพุตใดๆ ทั้งหมด 5 พรอมต์ ทำการอธิบายว่าพรอมต์ใดทำงานตามโจทย์ได้ดีที่สุด และสรุปเป็นพรอมต์ใหม่ ที่ดีขึ้นกว่าเดิม  “`  ตัวอย่างการใช้งาน  “`  โจทย์: จำแนกความรู้สึกของข้อความต่อไปนี้ว่าเป็น “บวก” หรือ “ลบ”  ข้อมูล: “หนังเรื่องนี้สนุกมาก!“  คำตอบที่ถูกต้อง: บวก  ข้อมูล: “ฉันไม่ชอบอาหารร้านนี้เลย”  คำตอบที่ถูกต้อง: ลบ  อธิบายเหตุผลว่าเหตุใดอินพุตจึงสอดคล้องกับเอาต์พุตที่คาดหวัง จากนั้นใช้เหตุผลดังกล่าวสร้างพรอมต์เพื่อให้ได้เอาต์พุตที่คาดหวังจากอินพุตใดๆ ทั้งหมด 5 พรอมต์ ทำการอธิบายว่าพรอมต์ใดทำงานตาม โจทย์ได้ดีที่สุด และสรุปเป็นพรอมต์ใหม่ ที่ดีขึ้นกว่าเดิม  “`  3. Declarative Self-improving Python (DSPy)  รูปที่ 2 ตัวอย่างการทำงานขอ DSPy [6]  หลักการการทำงาน: เป็นหนึ่งใน Python Library ที่มี Framework ที่ช่วยในการคอยปรับแต่งและพัฒนาคำสั่งให้ดีขึ้นโดยอัตโนมัติ สามารถอ่านรายละเอียดเพิ่มเติมได้ที่ https://arxiv.org/pdf/2310.03714   ขั้นตอนการทำงาน:  ตัวอย่างการใช้งาน  “`  import dspy  # กำหนด LLM ที่จะใช้ (ในตัวอย่างนี้ขอสมมติเป็น OpenAI)  lm = lm = dspy.LM(‘openai/gpt-4o-mini', api_key='YOUR_OPENAI_API_KEY')  dspy.settings.configure(lm=lm)  # กำหนด signature บอกว่า input คืออะไร (text) และ output คืออะไร (sentiment)  class SentimentAnalysis(dspy.Signature):      text = dspy.InputField(desc=”The text to analyze”)      sentiment = dspy.OutputField(desc=”Either ‘positive' or ‘negative'”)  # สร้าง module ที่ใช้ signature นี้ และมี dspy.Predict เพื่อเรียกใช้ LLM  class AnalyzeSentiment(dspy.Module):      def __init__(self):          super().__init__()          self.classify = dspy.Predict(SentimentAnalysis)      def forward(self, text):          pred = self.classify(text=text)          return pred  # สร้างตัวอย่างข้อมูล (input, output)  trainset...
17 March 2025
PDPA Icon

We use cookies to optimize your browsing experience and improve our website’s performance. Learn more at our Privacy Policy and adjust your cookie settings at Settings

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as needed, except for necessary cookies.

Accept all
Manage Consent Preferences
  • Strictly Necessary Cookies
    Always Active

    This type of cookie is essential for providing services on the website of the Personal Data Protection Committee Office, allowing you to access various parts of the site. It also helps remember information you have previously provided through the website. Disabling this type of cookie will result in your inability to use key services of the Personal Data Protection Committee Office that require cookies to function.
    Cookies Details

  • Performance Cookies

    This type of cookie helps the Big Data Institute (Public Organization) understand user interactions with its website services, including which pages or areas of the site are most popular, as well as analyze other related data. The Big Data Institute (Public Organization) also uses this information to improve website performance and gain a better understanding of user behavior. Although the data collected by these cookies is non-identifiable and used solely for statistical analysis, disabling them will prevent the Big Data Institute (Public Organization) from knowing the number of website visitors and from evaluating the quality of its services.

  • Functional Cookies

    This type of cookie enables the Big Data Institute (Public Organization)’s website to remember the choices you have made and deliver enhanced features and content tailored to your usage. For example, it can remember your username or changes you have made to font sizes or other customizable settings on the page. Disabling these cookies may result in the website not functioning properly.

  • Targeting Cookies

    "This type of cookie helps the Big Data Institute (Public Organization) understand user interactions with its website services, including which pages or areas of the site are most popular, as well as analyze other related data. The Big Data Institute (Public Organization) also uses this information to improve website performance and gain a better understanding of user behavior. Although the data collected by these cookies is non-identifiable and used solely for statistical analysis, disabling them will prevent the Big Data Institute (Public Organization) from knowing the number of website visitors and from evaluating the quality of its services.

Save settings