การระบาดของโรคโควิด (COVID-19) เป็นอีกหนึ่งวิกฤตการณ์โรคระบาดที่เป็นการแพร่ระบาดครั้งใหญ่ของโลก โดยมีจุดเริ่มต้นมาจากเมืองอู่ฮั่น ประเทศจีน โดยเริ่มจากช่วงปลายปี ค.ศ. 2019 โดยหลักการป้องกันการแพร่ระบาดหลัก ๆ คือ การลดการสัมผัสทางกายภาพของคนสู่คนให้ได้มากที่สุด เพื่อลดการแพร่กระจายของเชื้อ ไม่ว่าจะเป็นการทำงานที่บ้าน การกักตัวอยู่บ้าน การที่ผู้คนอยู่ห่างกันหลายเมตร การที่หลีกเลี่ยงชุมชนแออัด หรือสามารถเรียกได้อีกอย่างว่าการทำ Social distancing กราฟสองเส้นแสดงถึงแสดงจำนวนผู้ติดเชื้อที่ช่วงเวลาต่าง ๆ หลังจากมีผู้ติดเชื้อคนแรก โดยกราฟสีแดงคือเทรนด์จะเกิดขึ้นเมื่อไม่มีมาตรการป้องกันใดๆ ส่วนกราฟสีฟ้าคือเทรนด์ที่จะเกิดขึ้นเมื่อมีมาตรการป้องกัน โดยบทความนี้จะอธิบายถึงโมเดลการจำลองสถานการณ์การแพร่ระบาดของไวรัสโคโรนาผ่าน SEIR model, อธิบายตัวแปรและปัจจัยต่าง ๆ ที่มีผลต่อการทำนาย รวมถึงแสดงผลการทำนายการแพร่ระบาดของไวรัสเปรียบเทียบ เมื่อมีการทำ social distancing และ ไม่มีมาตรการป้องกันใด ๆ ค่าระดับการติดเชื้อ (Reproduction Number) ค่าระดับการติดเชื้อ () คือค่าเฉลี่ยที่ผู้ป่วยหนึ่งคนนั้นจะสามารถให้ผู้คนกลุ่มเสี่ยงป่วยเป็นจำนวนกี่คนในช่วงเวลาที่ยังติดเชื้ออยู่ หรือสรุปง่ายๆ ก็คือเป็นค่าที่บ่งบอกว่าไวรัสมีความสามารถการแพร่ระบาดได้มากน้อยแค่ไหน โดยการกำหนดค่าระดับการติดเชื้อ () ถือเป็นเป้าหมายหลักของการศึกษาการแพร่ระบาดของไวรัส โดยถ้า ค่าระดับการติดเชื้อ () < 1 จะหมายถึง โดยถ้า ค่าระดับการติดเชื้อ () = 1 จะหมายถึง โดยถ้า ค่าระดับการติดเชื้อ () > 1 จะหมายถึง ในปัจจุบันนั้นค่าระดับการติดเชื้อ () ของโรคโควิด-19 นั้นอยู่ที่ประมาณ 2 – 3, โดยการกำหนดค่าระดับการติดเชื้อ () ที่ถูกต้องได้นั้นถือเป็นปัจจัยที่สำคัญที่สุดในการทำนายโรคระบาด การที่ไวรัสค่าระดับการติดเชื้อ () สูงนั้นเป็นปัจจัยที่ต้องคำนึงถึงเป็นอย่างมาก แต่ไม่ใช่เหตุที่ทำให้วิตกกังวลแต่อย่างใด ค่าระดับการติดเชื้อ () นั้นเป็นค่าเฉลี่ยทำให้บางทีค่ามันดูสูงเกินกว่าปกติได้เนื่องจากหลายปัจจัย เช่นเหตุการณ์ที่เรียกว่า “Super-Spreader” เป็นเหตุการณ์ที่ผู้ติดเชื้อได้แพร่เชื้อโรคไปสู่ผู้คนกลุ่มเสี่ยงได้เป็นจำนวนมากในคราวเดียว ส่งผลให้ค่าระดับการติดเชื้อ () นั้นสูงขึ้น ดังนั้นค่าระดับการติดเชื้อ () สามารถแปรเปลี่ยนได้อยู่ตลอดเวลา และการติดตามผู้ป่วยทุกเคสนั้นเป็นไปได้ยาก ทำให้การประมาณค่าระดับการติดเชื้อ () นั้นซับซ้อน และเป็นไปได้ยากที่จะคาดคะเนได้อย่างถูกต้อง เพราะค่าระดับการติดเชื้อ () จะเปลี่ยนไป เมื่อมีข้อมูลชุดใหม่เข้ามา เราจะนำโมเดลทางคณิตศาสตร์มาจำลองสถานการณ์การแพร่ระบาดได้อย่างไร การจำลองสถานการณ์เกี่ยวกับไวรัสผ่านโมเดลทางคณิตศาสตร์ที่จะนำมาใช้นั้นจะเป็นการจำลองการแพร่กระจายในระดับประชากรผ่านสมมติฐาน โดยจะใช้ SEIR model (Susceptible, Exposed, Infectious, Recovered) โดยโมเดลจะแบ่งประชากรออกเป็น 4 ประเภท ได้แก่ โดย SEIR model นั้น ประชากรแต่ละประเภทนั้นจะมีการเปลี่ยนสถานะอยู่ตลอดเวลา ขึ้นอยู่กับการกำหนดสมมติฐาน, ปัจจัย และอัตราในการเพิ่ม หรือลด ของประชากรแต่ละประเภท โดยสามารถแสดงออกมาเป็นแผนภูมิเบื้องต้นได้ดังภาพด้านล่าง หลังจากมีการกำหนดสมมติฐาน รวมถึงปัจจัยเพิ่มลดของประชากรแต่ละประเภทผ่านสมการเชิงอนุพันธ์สามัญ (Ordinary Differential Equations) และจำนวนประชากรแต่ละประเภทในระบบที่ช่วงเวลาเริ่มต้นแล้ว ทางโมเดลจะคำนวณออกมาเป็นผลทำนายว่าเมื่อเวลาผ่านไปนั้น ประชากรแต่ละประเภทจะมีอัตราเพิ่ม หรือลดไปเท่าใด เพื่อที่จะได้ประเมินสถานการณ์ และออกมาตรการควบคุมได้ดียิ่งขึ้น การกำหนดสมมติฐาน และปัจจัยเพิ่มลดของประชากรแต่ละประเภทผ่านสมการเชิงอนุพันธ์สามัญ (Ordinary Differential Equations) และ กลุ่มเสี่ยงที่มีโอกาศติดเชื้อได้ (Susceptible) โดยปัจจัยหลักของการที่กลุ่มเสี่ยงนั้นจะติดเชื้อ เกิดจากการที่กลุ่มเสี่ยงอยู่ใกล้ผู้ที่ติดเชื้อ ดังนั้นเมื่อมีผู้ติดเชื้อในระบบมากขึ้น รวมถึง โอกาสที่จะกลุ่มเสี่ยงจะติดเชื้อเพิ่มสูงขึ้น จะทำให้มีประชากรเปลี่ยนประเภทจากกลุ่มเสี่ยง (Susceptible) เป็น ผู้ติดเชื้อที่อยู่ในระยะฟักตัว (Exposed) มากขึ้น (1) กลุ่มติดเชื้อที่อยู่ในระยะฟักตัว (Exposed) สามารถเพิ่มขึ้นในระบบจากการที่ ประชากรจากกลุ่มเสี่ยงติดเชื้อเพิ่มขึ้น และจะลดลงก็ต่อเมื่อผ่านระยะฟักตัว (Incubation period) กลายเป็นประชากรจำพวก กลุ่มที่ติดเชื้อที่สามารถแพร่เชื้อได้ (Infectious) (2) กลุ่มที่ติดเชื้อที่สามารถแพร่เชื้อได้ (Infectious) สามารถเพิ่มขึ้นได้ในระบบจากการที่ประชากรจากกลุ่มติดเชื้อที่อยู่ในระยะฟักตัว (Exposed) นั้นผ่านระยะการฟักตัวไปแล้ว และจะสามารถลดลงได้เมื่อผ่านระยะเวลาที่ติดเชื้อ (Infectious period) ไปแล้ว กลายเป็นประชากรกลุ่มที่รักษาจนหายแล้ว (Recovered) (3) กลุ่มที่หายจากการติดเชื้อแล้ว (Recovered) สามารถเพิ่มขึ้นได้ในระบบ โดยการที่มีผู้ติดเชื้อที่รักษาจนหายแล้วในระบบมากขึ้น และจะไม่ลดลงเนื่องจากผู้ที่รักษาจนหายแล้ว จะมีภูมิต้านทานโรค ทำให้ไม่สามารถเป็นซ้ำ และไม่สามารถแพร่เชื้อได้อีก (4) ผลลัพธ์ที่ได้จาก SEIR model โมเดลนี้จะมีจุดเริ่มต้นจากวันที่มีเหตุการณ์ผู้ติดเชื้อคนแรกในประเทศไทย (12 มกราคม พ.ศ. 2563) โดยโมเดลนี้จะเป็นโมเดลอย่างง่าย และจะไม่มีปัจจัยการเกิด หรือการตายของประชากร รวมถึงไม่มีการเข้าออกของประชากรระหว่างประเทศ (จำนวนประชากรในระบบจะเท่าเดิมเสมอ) นอกจากนั้นจะมีการกำหนดพารามิเตอร์ต่างๆ ดังนี้ ตัวเลขอ้างอิงจาก งานวิจัยเรื่องการแพร่ระบาดของโรคโควิดในอู่ฮั่น โดยช่วงเวลาเริ่มต้นนั้นทุกคนจะถือว่าเป็นประชากรกลุ่มเสี่ยงที่สามารถติดโรคทั้งหมดหมด โดยมีจำนวนผู้ที่สามารถแพร่เชื้อเริ่มต้นเพียงคนเดียว สังเกตได้ว่าถ้าหากในสถานการณ์ปกติที่ไร้มาตรการการป้องกันเช่น Social Distancing จะมีผู้ติดเชื้อที่พร้อมกันประมาณ 3 ล้านคน ในช่วงที่มีจำนวนผู้ป่วยสูงที่สุด ในช่วงเวลาประมาณ 170 วันหลังจากพบผู้ติดเชื้อคนแรก ซึ่งจะทำให้เกิดความสูญเสียเป็นวงกว้าง เนื่องจากระบบสาธรณสุขไม่สามารถรองรับผู้ป่วยจำนวนมากขนาดนี้พร้อมกันได้ ด้วยทรัพยากรที่มีอยู่อย่างจำกัด ผลลัพธ์ที่ได้จาก SEIR model เมื่อ add social distancing factor เมื่อเราเพิ่ม social distancing factor ลงไปใน SEIR model มันจะส่งผลให้ความรุนแรงในการแพร่ λ(I) ลดลงเนื่องจากประชากรมีการสัมผัส หรือเจอกันน้อยลงโดยเราจะแทนตัวแปรของ social distancing factor ด้วย ρ โดยจะมีค่าอยู่ระหว่าง 0 – 1 โดยถ้ามีค่าเป็น 0 จะหมายถึงประชากรทุกคนมีการเก็บตัวอยู่บ้าน และมีประสิทธิภาพในการทำ social distancing สูงมาก และ 1 จะหมายถึงเคสข้างบน คือไม่มีมาตรการป้องกันใดๆ เลย โดยจะกำหนดให้ ρ มีค่า 1 ไปจนถึงข่วงเวลาปัจจุบัน (ประมาณ 80 วันนับตั้งแต่มีผู้ติดเชื้อคนแรก) เพื่อจะแสดงให้เห็นว่า ถ้าหากเราเริ่มมีการทำ social distancing ตั้งแต่วันนี้ ลักษณะการเติบโตของจำนวนผู้ป่วยจะเป็นอย่างไร ซึ่งเมื่อมีตัวแปร ρ เข้ามาจะมีการแก้ไขในส่วนของความรุนแรงในการแพร่เชื้อ λ(I) สังเกตได้ว่าเมื่อมีการลดความรุนแรงจากการแพร่ I ลงจะสามารถทำให้กราฟจำนวนผู้ป่วยนั้นเพิ่มด้วยอัตราน้อยลงอย่างเห็นได้ชัด โดยถ้าทุกคนร่วมมือกัน อยู่ติดบ้าน หยุดเชื้อ เพื่อชาติ เราจะผ่านวิกฤตโรคระบาดนี้ไปได้โดยที่สูญเสียน้อยที่สุด นอกจากนี้ไวรัสโคโรนานั้นเป็นไวรัสที่เรายังไม่เคยมีการรับมือมาก่อน ทำให้ทางเรายังขาดตัวแปรหลายๆอย่างในการจำลอง และทำนายสถานการณ์การแพร่ระบาดให้แม่นยำนั้นเป็นไปได้ยาก References บทความเรื่องโมเดลการระบาดของโรคโควิดของ WHO https://triplebyte.com/blog/modeling-infectious-diseases#fn1 บทความเรื่องการทำ social distancing กับโมเดลการระบาดของโรคโควิด https://towardsdatascience.com/social-distancing-to-slow-the-coronavirus-768292f04296 งานวิจัยเรื่องการแพร่ระบาดของโรคโควิดในอู่ฮั่น...