Artificial Intelligence

Artificial Intelligence

ข่าวและบทความที่เกี่ยวข้อง

All Artificial Intelligence

PostType Filter En

บทความ

Data-Driven คืออะไร? ทำไมองค์กรยุคใหม่ถึงให้ความสำคัญ
“ข้อมูล” เปรียบเสมือนเชื้อเพลิงที่ขับเคลื่อนองค์กรให้เติบโตและก้าวหน้า องค์กรที่สามารถใช้ข้อมูลอย่างชาญฉลาด ไม่เพียงแค่เพิ่มความได้เปรียบในการแข่งขันเท่านั้น แต่ยังช่วยให้ปรับตัวต่อความเปลี่ยนแปลงของตลาดได้อย่างยั่งยืน การนำแนวคิด Data-Driven มาใช้ในองค์กรคือการเปลี่ยนแปลงก้าวสำคัญ ที่ไม่ใช่เพียงการเก็บข้อมูล แต่เป็นการวิเคราะห์และนำข้อมูลมาสนับสนุนการตัดสินใจเชิงกลยุทธ์ทุกระดับ ตั้งแต่การบริหารงานไปจนถึงการสร้างประสบการณ์ที่ตรงใจลูกค้า ในบทความนี้ เราจะพาคุณไปดูกันว่า Data-Driven คืออะไร มีความสำคัญต่อองค์กรอย่างไร พร้อมทั้งบอกเทคนิคการผลักดันองค์กรให้เป็น Data-Driven Organization รวมถึงยกตัวอย่างองค์กรที่ประสบความสำเร็จจากการใช้ Data-Driven มาขับเคลื่อนองค์กร Data-Driven คืออะไร? Data-Driven คือแนวคิดหรือกลยุทธ์ในการใช้ข้อมูล (Data) เป็นศูนย์กลางในการวางแผน ตัดสินใจ ในการดำเนินธุรกิจ หรือจัดการกับกระบวนการต่าง ๆ ขององค์กร โดยมีเป้าหมายเพื่อเพิ่มความแม่นยำในการวางแผน เพิ่มประสิทธิภาพในการทำงาน และลดความเสี่ยงในการตัดสินใจ ข้อมูลที่นำมาใช้งานสามารถเป็นได้ทั้งข้อมูลภายในองค์กร เช่น ยอดขาย สต็อกสินค้า และข้อมูลภายนอกองค์กร เช่น เทรนด์ตลาด พฤติกรรมผู้บริโภค โดย Data-Driven จะมีลักษณะสำคัญ 3 ข้อ คือ 1. มีการใช้ข้อมูลเป็นหลัก ทุกการวางแผนหรือการตัดสินใจจะต้องอิงจากข้อเท็จจริงที่ได้จากข้อมูล ไม่ใช่การคาดเดาหรือสัญชาตญาณ 2. มีการรวบรวมและวิเคราะห์ข้อมูล ให้ความสำคัญกับการรวบรวมข้อมูลที่ถูกต้อง ครบถ้วน และนำข้อมูลมาวิเคราะห์เพื่อหา Insights ที่ช่วยขับเคลื่อนธุรกิจ 3. มีการใช้เทคโนโลยีและเครื่องมือที่ทันสมัยช่วยวิเคราะห์ข้อมูล เช่น AI, Machine Learning, BI Tools เพื่อเพิ่มความรวดเร็วและแม่นยำในการประมวลผล ทำไมองค์กรยุคใหม่ให้ความสำคัญกับ Data-Driven? หลังจากโลกเกิดการเปลี่ยนแปลงครั้งใหญ่ ด้วยการเกิดโรคระบาด Covid -19 ที่ส่งผลกระทบไปทั่วโลกทั้งในระดับบุคคลและองค์กร ท่ามกลางความท้าทายนี้ ธุรกิจและหน่วยงานต่าง ๆ ได้ตระหนักถึงบทบาทสำคัญของ ข้อมูล เทคโนโลยี และนวัตกรรมใหม่ ๆ ที่ช่วยให้การดำเนินชีวิตและการทำงานเป็นไปอย่างราบรื่น แม้ในสถานการณ์ที่เต็มไปด้วยความไม่แน่นอน จากเดิมที่การทำธุรกิจเน้นการคาดการณ์และตัดสินใจบนผลกำไรเป็นหลัก แต่วันนี้ทุกอย่างเปลี่ยนไป หากขาดข้อมูลและเทคโนโลยี องค์กรอาจสูญเสียความสามารถในการเข้าใจลูกค้าและตอบสนองต่อความต้องการที่แท้จริง การตัดสินใจบนพื้นฐานของข้อมูลจึงไม่ใช่แค่เครื่องมือ แต่เป็น หัวใจสำคัญของการอยู่รอดและความสำเร็จ โดยประโยชน์ของการนำข้อมูลมาใช้กับองค์กรนั้นครอบคลุมในหลายมิติ ดังนี้ การใช้ข้อมูลช่วยให้องค์กรตัดสินใจอย่างมีประสิทธิภาพ โดยอิงจากข้อมูลเชิงลึกและข้อเท็จจริง แทนที่จะใช้สัญชาตญาณหรือการคาดเดา นอกจากนี้การวิเคราะห์ข้อมูลแบบเรียลไทม์ช่วยให้ผู้บริหารสามารถตอบสนองต่อความเปลี่ยนแปลงของตลาดได้ทันท่วงที ทำให้เกิดการวางแผนการตลาดที่ชาญฉลาดและสามารถตัดสินใจได้ว่าจะเลือกดำเนินการโดยใช้กลยุทธ์ใด องค์กรที่ขับเคลื่อนด้วยข้อมูลจะสามารถเข้าใจลูกค้าได้ดี ผ่านการวิเคราะห์ข้อมูลลูกค้าจากรูปแบบพฤติกรรม ความชอบ และข้อเสนอแนะ ซึ่งจะช่วยให้เข้าใจความต้องการของลูกค้า และสามารถออกแบบสินค้า บริการ รวมถึงการวางกลยุทธ์ทางการตลาดที่ตอบโจทย์ความคาดหวังของลูกค้า ด้วยการมอบประสบการณ์เฉพาะบุคคล (Personalization) จนสามารถเพิ่มความพึงพอใจและรักษาลูกค้าไว้ได้เช่นเดียวกัน การใช้ข้อมูลช่วยปรับปรุงกระบวนการทำงานจะช่วยลดต้นทุนและเพิ่มประสิทธิภาพในการดำเนินงานด้านต่าง ๆ  ทั้งยังช่วยให้สามารถวัดผลการดำเนินงานได้อย่างมีประสิทธิภาพ เนื่องจากองค์กรสามารถจัดการข้อมูลได้อย่างเป็นระบบ ทำให้การทำงานภายในองค์กรมีความราบรื่น สามารถใช้ประโยชน์จากข้อมูลที่มีอยู่มาดำเนินงานทางการตลาด และวัดผลได้อย่างเต็มประสิทธิภาพ การวิเคราะห์ข้อมูลช่วยให้มองเห็นโอกาสใหม่ ๆ ในตลาด เช่น แนวโน้มของอุตสาหกรรม พฤติกรรมผู้บริโภคที่กำลังเปลี่ยนแปลง หรือการใช้ข้อมูลมาสนับสนุนการทดลองเพื่อการพัฒนานวัตกรรมใหม่ ๆ ที่มีโอกาสประสบความสำเร็จสูง ข้อมูลช่วยให้องค์กรสามารถคาดการณ์ความเสี่ยง วิเคราะห์แนวโน้มตลาด และวางแผนกลยุทธ์ได้แม่นยำยิ่งขึ้น  สามารถคาดการณ์ความต้องการล่วงหน้าซึ่งการคาดการณ์ที่แม่นยำจะช่วยลดความสูญเสียและเพิ่มโอกาสในการทำกำไรได้มากยิ่งขึ้น การผลักดันองค์กรให้เป็น Data-Driven Organization   ปฏิเสธไม่ได้เลยว่าทุกวันนี้ธุรกิจและอุตสาหกรรมต่าง ๆ ล้วนขับเคลื่อนด้วยเทคโนโลยี การใช้ข้อมูลช่วยให้องค์กรสามารถก้าวนำคู่แข่งได้ สำหรับองค์กรที่ไม่ปรับตัว ไม่สามารถนำข้อมูล และเทคโนโลยีต่าง ๆ มาใช้งานได้ อาจเสียโอกาสในการแข่งขัน เพราะขาดข้อมูลเชิงลึกที่จำเป็น ดังนั้นการเปลี่ยนองค์กรให้ขับเคลื่อนด้วยข้อมูล จึงไม่ใช่เพียงแค่การนำเทคโนโลยีมาใช้ แต่เป็นการปรับเปลี่ยนวัฒนธรรมองค์กรและสร้างโครงสร้างที่รองรับการตัดสินใจบนพื้นฐานของข้อมูล และนี่คือแนวทางที่องค์กรสามารถนำไปใช้เพื่อก้าวสู่การเป็น Data-Driven Organization ได้สำเร็จ 1. สร้างวัฒนธรรม Data-Driven ในองค์กร 2. รวบรวมและจัดการข้อมูลอย่างเป็นระบบ 3. ใช้เครื่องมือและเทคโนโลยีที่เหมาะสม 4. ส่งเสริมการใช้ Data-Driven Insights ในการตัดสินใจ 5. สร้างทีมงานและโครงสร้างที่สนับสนุน Data-Driven 6. ประเมินผลและปรับปรุงอย่างต่อเนื่อง การผลักดันองค์กรให้เป็น Data-Driven Organization ต้องอาศัยทั้งการเปลี่ยนแปลงด้านเทคโนโลยี การสร้างวัฒนธรรมองค์กร และการสนับสนุนจากผู้นำในการวางโครงสร้างที่ชัดเจน รวมถึงส่งเสริมการใช้ข้อมูลในทุกกระบวนการ จะช่วยให้องค์กรสามารถตอบสนองต่อการเปลี่ยนแปลงและเติบโตได้อย่างยั่งยืนในยุคดิจิทัล ตัวอย่างองค์กรที่ประสบความสำเร็จด้วยแนวคิด Data-Driven Amazon Amazon เป็นหนึ่งในตัวอย่างที่โดดเด่นของการใช้ข้อมูลเพื่อสร้างความได้เปรียบในการแข่งขัน ด้วยการนำข้อมูลพฤติกรรมผู้บริโภคมาวิเคราะห์ เช่น Netflix Netflix ใช้ข้อมูลเชิงลึกเพื่อเข้าใจพฤติกรรมการรับชมของผู้ใช้ เช่น Google Google ใช้ข้อมูลเป็นหัวใจสำคัญในการพัฒนาผลิตภัณฑ์และบริการ เช่น Starbucks Starbucks ใช้ข้อมูลในการวางแผนธุรกิจและปรับปรุงประสบการณ์ของลูกค้า เช่น Tesla Tesla ใช้ข้อมูลจากรถยนต์ทุกคันที่เชื่อมต่อกับระบบคลาวด์ เพื่อ Spotify   อีกหนึ่งแคมเปญที่มีชื่อเสียงอย่างมากของ Spotify ที่รู้จักกันในนาม “Spotify Wrapped” ถือเป็นแคมเปญการตลาดสุดโด่งดังที่เริ่มตั้งแต่ปี 2015  จากตัวอย่างที่ยกมา เราจะเห็นได้ว่า Data-Driven คือ แนวคิดสำคัญที่องค์กรชั้นนำระดับโลกนำมาปรับใช้ให้เข้ากับบริบททางธุรกิจ เพราะเมื่อเทคโนโลยีเข้ามามีบทบาทในชีวิต ส่งผลให้เกิดการเปลี่ยนแปลงอย่างรวดเร็วของพฤติกรรมผู้บริโภค “การขับเคลื่อนธุรกิจด้วยข้อมูล” นอกจากจะช่วยให้องค์กรดึงศักยภาพของข้อมูลออกมาใช้ได้อย่างเต็มที่แล้ว ยังช่วยให้เราเข้าใจในพฤติกรรมของผู้บริโภคมากขึ้น รวมถึงช่วยให้แต่ละฝ่ายตัดสินใจได้อย่างมีประสิทธิภาพโดยมีข้อมูลอ้างอิงที่เป็นรูปธรรม และยังช่วยพัฒนาสินค้าและบริการให้ดียิ่งขึ้น ไปจนถึงช่วยให้การบริหารองค์กรมีประสิทธิภาพมากขึ้นอีกด้วย         อ้างอิง : 
10 January 2025

บทความ

รู้จัก MICROSOFT COPILOT AI ที่ช่วยลดระยะเวลาในการทำงานและเพิ่มประสิทธิภาพให้กับการทำงานของคุณ
ในช่วงหลายปีที่ผ่านมา AI หรือ Artificial Intelligence คงเป็นคำที่หลาย ๆ คนเคยได้ยินผ่านหูกันมาบ้างไม่มากก็น้อย ซึ่ง AI นั้นได้มีบทบาทและกลายเป็นส่วนหนึ่งของชีวิตมากขึ้นเรื่อย ๆ รวมถึงเปลี่ยนรูปแบบการใชชีวิต และการทำงานของคนหลายคนอีกด้วย Microsoft Copilot เป็นฟีเจอร์ใหม่ที่ทาง Microsoft พัฒนาขึ้นโดยใช้ความสามารถของ Generative AI เพื่อเพิ่มประสิทธิภาพการทำงานของ Application ต่าง ๆ เช่น Microsoft Office และ Microsoft Excel เป็นต้น  ในบทความนี้เราจะพูดถึงว่า Generative AI คืออะไร และ Microsoft Copilot สามารถใช้ทำอะไรได้บ้าง Generative AI คืออะไร Generative AI (Generative Artificial Intelligence) คือ AI ที่ใช้การเรียนรู้เชิงลึก (Deep Learning) มาใช้ในการสร้างสรรค์ สิ่งต่างๆ ได้อย่างหลากหลาย ในรูปแบบอัตโนมัติ เช่น ภาพ, เสียง, วิดีโอ, เนื้อหาข้อความ และ อื่นๆ ยกตัวอย่าง โมเดลที่เห็นได้ชัดกันทุกวันนี้คือ ChatGPT เป็นโมเดลที่ใช้ความสามารถของ Generative AI ในการประมวลผลจากเนื้อหาข้อมูลต่าง ๆ ในอินเทอร์เน็ต และ สร้างสรรค์คำตอบให้ตรงกับคำถามที่ทางผู้ใช้งาน input เข้าไป ณ ปัจจุบันมีหลายธุรกิจเริ่มมีการนำ Generative AI เข้ามาใช้งานกันอย่างต่อเนื่อง เพื่อช่วยในการสร้างสรรค์เนื้อหาที่แปลกใหม่ ช่วยในการลดระยะเวลาในการทำงานเพื่อให้งานเสร็จไวยิ่งขึ้น และเพิ่มประสิทธิภาพของการทำงานในบางสายงาน ซึ่งทั้งหมดนี้จะช่วยผลักดันธุรกิจให้สามารถก้าวหน้าไปอย่างก้าวกระโดด และทาง Microsoft ก็ได้เล็งเห็นถึงประโยชน์ ของ Generative AI จึงสร้างฟีเจอร์ Microsoft Copilot เพื่อให้ผู้ใช้งานสามารถทำงานได้อย่างมีประสิทธิภาพมากยิ่งขึ้น Microsoft Copilot สามารถใช้ทำอะไรได้บ้าง จากที่ได้กล่าวไว้ข้างต้น Microsoft Copilot ใช้ Generative AI มาประยุกต์เพื่อเพื่อเพิ่มประสิทธิภาพการทำงานของ Application ผมจะขอยกตัวอย่างทีละ Application ว่า Microsoft Copilot มีบทบาทอย่างไร Microsoft Teams เราสามารถนำ Microsoft Copilot มาใช้ในการประชุม Team เพื่อสรุปประเด็นการสนทนาที่สําคัญ รวมถึงแนะนํารายการการดําเนินการทั้งหมดแบบเรียลไทม์ในระหว่างการประชุม นอกเหนือจากด้านการประชุม Microsoft Copilot ก็สามารถที่จะรวบรวมทุกอย่างใน Teams ไว้ด้วยกัน เช่น บันทึก, อีเมล์, ปฏิทิน และ งานนำเสนอ เพื่อช่วยให้เราสามารถค้นหาสิ่งที่ต้องการได้สะดวกรวดเร็วยิ่งขึ้น รูปที่ 1 Microsoft Teams with Copilot(Source: https://copilot.cloud.microsoft/th-th/copilot-teams) Microsoft Word ในด้านของงานเอกสารหากเรา ยังคิดไม่ออกว่าจะเขียนอะไร Microsoft Copilot สามารถที่จะช่วยสร้างแบบร่าง เพื่อเป็นไอเดียเบื้องต้นให้เราเริ่มเขียนได้ง่ายยิ่งขึ้น หรือ บางทีหากเราเขียนเอกสารไปจนถึงกลางทางแล้วเกิดคิดไม่ออก Microsoft Copilot ก็สามารถที่จะช่วยต่อยอดจากเนื้อหาที่มีอยู่แล้วได้อีกด้วย นอกเหนือจากนี้ Microsoft Copilot สามารถแปลงข้อความที่เราเขียนให้กลายเป็นตารางได้ทันที เพื่อประหยัดเวลาในการสร้างตารางอีกด้วย และสุดท้ายหากเราต้องการจากเนื้อหาจำนวนมาก Microsoft Copilot ก็มีฟีเจอร์ที่สามารถช่วยสรุปใจความสำคัญได้ทันที รูปที่ 2 Microsoft Word with Copilot(Source: https://copilot.cloud.microsoft/th-th/copilot-word) Microsoft PowerPoint Microsoft Copilot สามารถสร้างงานนำเสนอด้วยเทมเพลตที่มีอยู่ ด้วยธีมที่เรามีอยู่แล้ว หรือสร้างงานนำเสนอใหม่ด้วยธีมหรือเทมเพลตจากไฟล์ใหม่แบบอัตโนมัติ ซึ่งช่วยให้เราไม่จำเป็นต้องเสียเวลาในการสร้างงานนำเสนอใหม่ตั้งแต่ต้น อย่างไรก็ตามเราอาจจะต้องมีการตรวจสอบอีกรอบนึงหลังจากใช้ฟีเจอร์นี้ เพื่อตรวจสอบความถูกต้องทั้งหมด นอกจากนี้ Microsoft Copilot ยังสามารถสร้างงานนําเสนอจากเอกสาร Word หรือ PDF ได้ทันทีอีกด้วย ซึ่งจะช่วยประหยัดเวลาการทำงานนำเสนอได้อย่างมาก ถ้าเทียบกับการที่เราต้องค่อยๆ หยิบเอาข้อมูลจาก Word หรือ PDF มาใส่ใน PowerPoint รูปที่ 3 Microsoft PowerPoint with Copilot(Source: https://copilot.cloud.microsoft/en-us/copilot-powerpoint) Microsoft Excel สำหรับ Microsoft Excel ตัว Microsoft Copilot ก็ยังสามารถช่วยให้เราสํารวจและทําความเข้าใจข้อมูลได้ดีขึ้น โดยการสร้างกราฟ Visualization ข้อมูลเบื้องต้น และถ้าเราต้องการจะดูข้อมูลเชิงลึก Microsoft Copilot ก็สามารถช่วยวิเคราะห์และแสดงภาพข้อมูลเชิงลึกได้เช่นกัน นอกจากนี้ยังสามารถช่วยไฮไลต์ กรอง และ เรียงลำดับข้อมูลได้ง่ายยิ่งขึ้น และถ้าหากเราต้องการใช้สูตรในการคำนวณที่ซับซ้อนทาง Microsoft Copilot ก็สามารถให้คำแนะนำและเสนอสูตรที่เหมาะสมกับสิ่งที่เราต้องการ รูปที่ 4 Microsoft Excel with Copilot(Source: https://copilot.cloud.microsoft/en-us/copilot-excel) OneNote นอกจากนี้ Microsoft Copilot ก็สามารถนำมาใช้กับ OneNote ได้เช่นกัน โดย Microsoft Copilot จะช่วยสรุปข้อความใน page ที่เราเคยจดมาจากการประชุม หรือ อื่น ๆ ให้อยู่ในรูปแบบที่สามารถแชร์ให้คนอื่นอ่านและเข้าใจได้ง่าย สามารถสร้าง to-do list อัตโนมัติจากสิ่งที่เราจดโน้ตเอาไว้ รวมถึงสร้าง plan สำหรับงานอีเว้นท์, การประชุม และ งานเฉลิมฉลอง จากข้อมูลที่มีได้อีกเช่นกัน รูปที่ 5 Microsoft OneNote with Copilot(Source: https://copilot.cloud.microsoft/en-us/copilot-onenote) อย่างไรก็ตาม Microsoft Copilot ก็ไม่ใช่เครื่องมือ AI เพียงเครื่องมือเดียวที่สามารถช่วยเพิ่มประสิทธิภาพการทำงานในองค์กร  ยังมี AI อื่น ๆ ที่มีความสามารถในการช่วยเหลือเหมือนกับ Microsoft Copilot เช่น บทสรุป จากสิ่งที่เล่ามาทั้งหมด จะเห็นได้ว่า Microsoft Copilot สามารถช่วยเหลือการทำงานของเราได้ ในหลาย ๆ ด้าน ไม่ว่าจะเป็นการประชุม, การทำเอกสาร, การทำงานนำเสนอ และ อื่น ๆ แต่อย่างไรก็ตาม AI อาจจะไม่ถูกต้องเสมอไป ในบางงาน Microsoft Copilot...
25 September 2024

บทความ

Responsible AI: ปัญญาประดิษฐ์ที่มีความรับผิดชอบ 
ในยุคที่เทคโนโลยีปัญญาประดิษฐ์ (AI) กำลังก้าวหน้าอย่างรวดเร็วและมีบทบาทสำคัญในหลากหลายแง่มุมของชีวิตเรา แนวคิดเรื่อง Responsible AI หรือปัญญาประดิษฐ์ที่มีความรับผิดชอบ จึงเป็นประเด็นที่ได้รับความสนใจมากขึ้นเรื่อย ๆ แต่ Responsible AI คืออะไร และทำไมจึงมีความสำคัญ ? บทความนี้จะพาคุณไปทำความรู้จักกับแนวคิดนี้อย่างละเอียด  Responsible AI คืออะไร?  Responsible AI หมายถึงแนวทางในการพัฒนา ใช้งาน และกำกับดูแลเทคโนโลยี AI ที่คำนึงถึงผลกระทบทางจริยธรรม สังคม และกฎหมาย โดยมุ่งเน้นให้ AI สร้างประโยชน์สูงสุดแก่มนุษย์และสังคม ขณะเดียวกันก็ลดความเสี่ยงและผลกระทบเชิงลบที่อาจเกิดขึ้น  หลักการสำคัญของ Responsible AI  1. ความโปร่งใส (Transparency): ระบบ AI ควรสามารถอธิบายกระบวนการตัดสินใจได้ เพื่อให้ผู้ใช้เข้าใจและตรวจสอบได้  2. ความเป็นธรรม (Fairness): ลดอคติและการเลือกปฏิบัติในการทำงานของ AI เพื่อให้มั่นใจว่าทุกคนได้รับการปฏิบัติอย่างเท่าเทียม  3. ความปลอดภัยและความน่าเชื่อถือ (Safety and Reliability): AI ต้องทำงานอย่างปลอดภัยและเชื่อถือได้ โดยมีการทดสอบและตรวจสอบอย่างรัดกุม  4. ความเป็นส่วนตัว (Privacy): ปกป้องข้อมูลส่วนบุคคลของผู้ใช้และเคารพสิทธิความเป็นส่วนตัว  5. ความรับผิดชอบ (Accountability): มีกลไกรับผิดชอบเมื่อเกิดปัญหาจากการใช้ AI และมีการกำหนดผู้รับผิดชอบอย่างชัดเจน  6. ผลกระทบต่อสังคม (Social Impact): พิจารณาผลกระทบในวงกว้างต่อสังคม เศรษฐกิจ และสิ่งแวดล้อม  Responsible AI เป็นแนวคิดสำคัญในการพัฒนาและใช้งานปัญญาประดิษฐ์อย่างมีความรับผิดชอบ โดยมุ่งเน้นการสร้างความไว้วางใจ ลดความเสี่ยง และส่งเสริมนวัตกรรมที่เป็นประโยชน์ต่อสังคม ขณะเดียวกันก็เตรียมพร้อมรับมือกับกฎระเบียบที่อาจเกิดขึ้นในอนาคต อย่างไรก็ตาม การนำ Responsible AI ไปปฏิบัติยังคงมีความท้าทายหลายประการ ทั้งในแง่ของความซับซ้อนของเทคโนโลยี การสร้างสมดุลระหว่างนวัตกรรมและความรับผิดชอบ ความแตกต่างทางวัฒนธรรม และการวัดผลความสำเร็จ การตระหนักถึงความสำคัญและความท้าทายเหล่านี้จะช่วยให้องค์กรและผู้พัฒนาสามารถก้าวไปข้างหน้าในการสร้างระบบ AI ที่มีประสิทธิภาพและรับผิดชอบต่อสังคมได้อย่างยั่งยืน  แนวทาง Responsible AI ของบริษัทเทคโนโลยีชั้นนำ  เพื่อให้เห็นภาพที่ชัดเจนขึ้นว่า Responsible AI ถูกนำไปปฏิบัติอย่างไรในโลกธุรกิจ เรามาดูการเปรียบเทียบแนวทางของบริษัทยักษ์ใหญ่ด้านเทคโนโลยี ได้แก่ Google, Microsoft, Amazon, IBM, OpenAI และ Facebook ดังตาราง  Google: ให้ความสำคัญกับความโปร่งใสและความเป็นธรรมใน AI เป็นอย่างมาก โดยมีหลักการ AI ที่ชัดเจนและเครื่องมืออย่าง AI Explainability เพื่อให้ผู้ใช้เข้าใจการทำงานของโมเดล AI ได้ดีขึ้น นอกจากนี้ Google ยังมีโครงการต่างๆ เช่น Project AI ที่มุ่งเน้นการพัฒนา AI ที่เป็นประโยชน์ต่อสังคม  Microsoft: เน้นย้ำถึงความรับผิดชอบและความปลอดภัยในการพัฒนา AI โดยมี Responsible AI Standard เป็นแนวทางในการพัฒนาผลิตภัณฑ์ AI ทั้งหมด นอกจากนี้ Microsoft ยังมีโครงการ AI for Earth และ AI for Good ที่มุ่งใช้ AI แก้ปัญหาสิ่งแวดล้อมและสังคม  Amazon: ให้ความสำคัญกับความโปร่งใสและความรับผิดชอบในการใช้ AI โดยมีเครื่องมือตรวจจับอคติและกระบวนการตรวจสอบที่เข้มงวด นอกจากนี้ Amazon ยังสนับสนุนการวิจัยด้าน AI ผ่านโครงการ Amazon Scholar และนำ AI มาใช้เพื่อพัฒนาผลิตภัณฑ์และบริการต่างๆ  IBM: เน้นย้ำถึงความน่าเชื่อถือ ความโปร่งใส และความเป็นธรรมในการพัฒนา AI โดยมีเครื่องมืออย่าง AI Fairness 360 และ AI OpenScale เพื่อช่วยให้นักพัฒนาสร้างโมเดล AI ที่เป็นธรรมและโปร่งใส นอกจากนี้ IBM ยังมีโครงการ Project Debater ที่พัฒนา AI เพื่อโต้แย้งกับมนุษย์  OpenAI: เน้นย้ำถึงความปลอดภัยและประโยชน์ต่อมนุษยชาติในการพัฒนา AI โดยใช้เทคนิค Reinforcement Learning from Human Feedback (RLHF) เพื่อฝึกสอนโมเดล AI ให้เป็นไปตามค่าที่มนุษย์ต้องการ นอกจากนี้ OpenAI ยังเปิดเผยข้อมูลทางเทคนิคเกี่ยวกับโมเดล AI เพื่อส่งเสริมความโปร่งใส  Meta (Facebook): เน้นย้ำถึงความเป็นธรรม ความโปร่งใส และความรับผิดชอบในการพัฒนา AI โดยมีเครื่องมือ Fairness Flow เพื่อช่วยให้นักพัฒนาตรวจสอบและแก้ไขปัญหาอคติในโมเดล AI นอกจากนี้ Meta ยังมี Oversight Board เพื่อตรวจสอบการตัดสินใจที่สำคัญของบริษัทเกี่ยวกับเนื้อหาบนแพลตฟอร์ม  บริษัทเทคโนโลยีชั้นนำเหล่านี้ต่างให้ความสำคัญกับการพัฒนา AI อย่างรับผิดชอบ โดยมีแนวทางและเครื่องมือที่หลากหลายเพื่อช่วยให้มั่นใจว่า AI จะถูกนำมาใช้ในทางที่ดีและเป็นประโยชน์ต่อสังคม  แนวทาง Responsible AI ของหน่วยงานภาครัฐในประเทศไทย  สำหรับประเทศไทย แม้จะยังไม่มีกรอบการทำงานหรือแนวทางปฏิบัติด้าน Responsible AI ที่เป็นทางการ แต่ก็มีความพยายามในการพัฒนาในด้านนี้ สรุปสถานการณ์ปัจจุบันของไทยได้ดังนี้:  1. ยุทธศาสตร์ปัญญาประดิษฐ์แห่งชาติ:     กระทรวงดิจิทัลเพื่อเศรษฐกิจและสังคม (MDES) ได้จัดทำ “ยุทธศาสตร์ปัญญาประดิษฐ์แห่งชาติ” ซึ่งมีการกล่าวถึงประเด็นด้านจริยธรรมและความรับผิดชอบในการพัฒนาและใช้งาน AI โดยหลักการสำคัญที่สะท้อนถึงแนวคิด Responsible AI ในยุทธศาสตร์ฯ ได้แก่   การพัฒนาอย่างยั่งยืน: เน้นการนำ AI มาใช้เพื่อแก้ไขปัญหาสังคมและเศรษฐกิจอย่างยั่งยืน โดยคำนึงถึงผลกระทบในระยะยาวต่อสิ่งแวดล้อมและสังคม  ความโปร่งใส: การพัฒนาและใช้งาน AI ต้องมีความโปร่งใส สามารถตรวจสอบได้ และสามารถอธิบายได้ว่า AI ทำงานอย่างไร  ความเป็นธรรม: การออกแบบและพัฒนา AI ต้องปราศจากอคติ และไม่ก่อให้เกิดความไม่เท่าเทียม  ความปลอดภัย: การพัฒนาและใช้งาน AI ต้องมีความปลอดภัย ไม่ก่อให้เกิดอันตรายต่อบุคคลหรือทรัพย์สิน  ความรับผิดชอบ: ผู้พัฒนาและผู้ใช้งาน AI ต้องมีความรับผิดชอบต่อผลกระทบที่เกิดจากการใช้งาน AI  2. แนวปฏิบัติจริยธรรมปัญญาประดิษฐ์ ของ ETDA:     แนวปฏิบัติจริยธรรมปัญญาประดิษฐ์ หรือ AI Ethics Guideline ที่จัดทำโดยสำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ (สพธอ.) หรือ ETDA นั้น...
30 August 2024

บทความ

Self-RAG คืออะไร มาช่วยให้ LLMs ทำงานดีขึ้นได้อย่างไร
ทุกวันนี้ Large Language Models (LLMs) ถูกนำมาใช้กันอย่างแพร่หลายมากขึ้นในปัจจุบัน หลายคนถือว่า LLMs ถูกผนวกรวมเป็นส่วนหนึ่งของชีวิตและการทำงานของเราอย่างขาดไม่ได้ แต่อย่างไรก็ตาม การประยุกต์ใช้งาน LLMs ก็ยังพบปัญหาและอุปสรรคบางอย่างอยู่ เช่น ปัญหาของการสร้างคำตอบที่ไม่ถูกต้องขึ้นมา (Hallucination) หรือปัญหาของชุดความรู้ที่ไม่อัปเดต ทำให้มีคนที่พยายามคิดค้นและพัฒนากระบวนการที่จะมาช่วยแก้ปัญหาตรงจุดนี้ ซึ่งวิธีที่จะมาช่วยแก้ปัญหาดังกล่าว เรียกว่า Retrieval-Augmented Generation (RAG)  RAG คืออะไร  Retrieval-Augmented Generation (RAG) คือ เทคนิคที่จะมาช่วยแก้ปัญหาต่าง ๆ ที่เป็นข้อจำกัดของ LLMs ในปัจจุบัน เพื่อให้ LLMs มีความถูกต้องและความน่าเชื่อถือมากยิ่งขึ้น โดยมีกระบวนการในการผนวกชุดความรู้จากแหล่งข้อมูลภายนอก (External Source) มาใช้ประกอบในกระบวนการสร้างข้อความผลลัพธ์ ซึ่งการใช้ RAG จะช่วยเพิ่มความถูกต้องและความน่าเชื่อถือของผลลัพธ์ที่ได้จาก LLMs โดยเฉพาะงานที่ต้องใช้ความรู้ที่เฉพาะเจาะจงมาก ๆ รวมถึงยังมีข้อดีที่ทำให้ผลลัพธ์ของ LLMs สามารถตอบคำถามจากการอ้างอิงชุดความรู้ที่มีการอัปเดตให้เป็นปัจจุบันได้โดยไม่ต้องทำการฝึกฝนหรือ Fine-tuning LLMs ใหม่เรื่อย ๆ โดย RAG นั้นประกอบไปกระบวนหลัก 3 ขั้นตอน ได้แก่ 1.) การสืบค้นเนื้อหาที่เกี่ยวข้อง (Retrieve) 2.) การเพิ่มเนื้อหาเข้าไปใน Prompt (Augment) และ 3.) การสร้างข้อความผลลัพธ์ (Generate) ซึ่งมีรายละเอียดของกระบวนการดังต่อไปนี้  RAG Workflow  ข้อจำกัดของ RAG ทั่วไป  ถึงแม้การใช้ RAG ใน LLMs จะช่วยให้ผลลัพธ์ที่ได้มีความถูกต้องมากขึ้น โดยการดึงข้อมูลสนับสนุนที่เกี่ยวข้องมาเป็นบริบทเพิ่มเติมสำหรับสร้างคำตอบที่เฉพาะเจาะจงขึ้น แต่อย่างไรก็ตาม บางกรณีการดึงข้อมูลที่ไม่เกี่ยวข้องออกมาใช้ อาจจะด้วยเหตุผลที่ว่าในแหล่งข้อมูลภายนอกที่ใช้อ้างอิงไม่มีเนื้อหาที่เกี่ยวข้องอยู่เลย หรืออาจจะเป็นที่ อัลกอริทึมของการสืบค้น (Retrieve) ไม่ดีเพียงพอ สิ่งเหล่านี้ก็มีผลทำให้ผลลัพธ์ที่ได้จาก LLMs แทนที่จะดีขึ้นกลับแย่ลงกว่าเดิมก็เป็นได้ เนื่องจาก RAG อาจทำให้ไปลดความสามารถในการตอบคำถามแบบ general ที่มีอยู่เดิมของ LLMs ที่ใช้ ด้วยเหตุนี้ Self-RAG จึงถูกพัฒนาขึ้นมาเพื่อมาช่วยปรับปรุงคุณภาพและความถูกต้องของผลลัพธ์ที่ได้จาก LLMs และไม่ทำให้ความสามารถที่มีอยู่เดิมของ LLMs หายไป ผ่านแนวคิด On-demand Retrieval และ Self-reflection  Self-RAG  Self-RAG (Self-Reflective Retrieval-Augmented Generation) เป็น Framework เช่นเดียวกับ RAG ที่มีการเพิ่มส่วนของการพิจารณาไตร่ตรองผลลัพธ์ของตนเอง (Self-reflection) เพื่อตัดสินใจว่าจะทำการสืบค้นข้อมูลเพิ่มเติมหรือไม่ (On-demand Retrieval) หรือจะข้ามการสืบค้นและใช้ผลลัพธ์ที่ได้จาก LLMs เลย ด้วยวิธีการนี้จะช่วยปรับปรุงผลลัพธ์จาก LLMs ให้มีคุณภาพและตรงตามความเป็นจริงมากยิ่งขึ้น โดย LLMs ที่ประยุกต์ใช้วิธีการนี้จะถูกฝึกฝนให้มีการสร้าง special token ที่ชื่อว่า “Reflection Token” ซึ่งเป็นผลที่ได้จากการพิจารณาว่า ควรดำเนินการอย่างไรกับผลลัพธ์ที่สร้างมาจาก LLMs เพื่อให้สามารถควบคุม และปรับการทำงานให้เหมาะสมเพิ่มเติม ผ่านการพิจารณา Reflection Token ที่ได้  Reflection Token สามารถแบ่งได้เป็น 2 ประเภทหลัก ได้แก่ “Retrieval Token” และ “Critique Token” โดย Retrieval Token จะเป็น Token ที่แสดงความจำเป็นของการสืบค้น หรือการตัดสินใจว่าจะทำการสืบค้นหรือ Retrieve ข้อมูลมาใช้เป็นเนื้อหาเพิ่มเติมใน prompt หรือไม่ ส่วน Critique Token จะเป็น Token ที่แสดงผลการวิเคราะห์คุณภาพของข้อความที่ถูกสร้างขึ้นมา เช่น ดูเนื้อหาของข้อความผลลัพธ์ที่ได้จาก LLMs ว่ามีความเกี่ยวข้องกับคำถามมากน้อยขนาดไหน ซึ่ง Critique Token ประกอบไปด้วย Token ย่อย 3 กลุ่ม ได้แก่ IsREL, IsSup, IsUse Tokens ดังแสดงในตารางด้านล่าง  การทำงานของ Self-RAG แบ่งเป็น 3 ขั้นตอนหลัก ได้แก่ 1) ดึงข้อมูล (Retrieve) 2) สร้าง (Generate) และ 3) วิจารณ์ (Critique) โดยมีรายละเอียดแต่ละขั้นดังต่อไปนี้  ขั้นตอนที่ 1 Retrieve on demand  จากภาพจะเห็นว่า หลังจากที่เราให้ input prompt กับ LLM ซึ่งโดยปกติ LLM จะให้ผลลัพธ์ออกมาเป็นข้อความที่ตอบคำถามที่เราใส่เข้าไปเท่านั้น แต่ในครั้งนี้ LLM จะถูกฝึกฝนมาให้สามารถทำการสร้าง Reflection Token ต่อท้ายข้อความได้ ซึ่ง Reflection Token ในตัวอย่างด้านบนนี้จะเป็นประเภท Retrieval Token ซึ่งจะเป็น token ที่บอกว่าการ retrieve ข้อมูลเพื่อใช้เป็นเนื้อหามา support เพิ่มน่าจะมีประโยชน์หรือไม่ ซึ่งถ้า Retrieval Token มีค่าเป็น yes โมเดลสำหรับทำการสืบค้น (Retriever Model) จะถูกเรียกเพื่อไปทำการสืบค้นเนื้อหาที่เกี่ยวข้องในฐานข้อมูลเป็นลำดับถัดไป  ขั้นตอนที่ 2 Generate segment in parallel  หลังจากที่ Retriever Model ทำการสืบค้นเนื้อหาหรือข้อความที่มีความเกี่ยวข้องขึ้นมา k อันดับแรก (Top k) ข้อความเหล่านั้นจะถูกนำไปใช้ประกอบรวมเพื่อเป็นบริบท (Context) ให้กับ prompt ตั้งต้น แล้วใส่เป็น input ให้กับ LLM เพื่อสร้างข้อความผลลัพธ์ออกมา ซึ่งผลลัพธ์ที่ได้จาก LLM ในรอบนี้จะมี Critique Token กำกับมาเพิ่มด้วยดังภาพ โดยเป็นการวัดคุณภาพของเนื้อหาที่ถูกสร้างจาก input context ที่ต่างกัน เพื่อวัดความเกี่ยวข้องของคำตอบที่ได้และความครบถ้วนหรือความครอบคลุมของคำตอบที่ได้ จากตัวอย่างจะเห็นว่าการใช้ context หมายเลข 1 จะได้ผลลัพธ์ที่เกี่ยวข้องกับคำถาม และครอบคลุมคำถามมากที่สุด  ขั้นตอนที่ 3 Critique output and select best segment ...
26 March 2024

บทความ

จาก Log สู่ข้อมูลเชิงลึก: พลังของ Log Parser ขจัดปัญหา Log ยุ่งเหยิง วิเคราะห์ข้อมูลรวดเร็ว
Log เป็นข้อมูลที่ได้มาจากระบบคอมพิวเตอร์ ซึ่งทำหน้าที่ในการบันทึกรายละเอียดข้อมูลการทำงานต่าง ๆ ของระบบ ช่วยให้ผู้พัฒนาและผู้ดูแลระบบสามารถเข้าใจการทำงานของระบบ วิเคราะห์พฤติกรรมที่ผิดปกติและสามารถแก้ไขได้อย่างทันท่วงที ในระบบที่มีขนาดใหญ่ขึ้นทำให้ปริมาณของ Log นั้นเพิ่มตามไปด้วย การอ่านข้อมูล Log ทั้งหมดด้วยตนเองจึงทำได้ยาก Log parser จึงเข้ามาช่วยแก้ปัญหาตรงนี้ โดย Log parser นั้นจะทำให้ข้อมูล Log ที่ไม่มีโครงสร้างชัดเจน กลายเป็น Log template ที่มีโครงสร้างมากขึ้นกว่าเดิมได้ การสร้าง Log จากในระบบคอมพิวเตอร์นั้น จำเป็นต้องมี Template ที่มนุษย์เขียนให้ เช่น “Sending <*> quality objects” จะเห็นได้ว่า Template ดังกล่าวมีช่องว่าง (Placeholder) ที่ด้วยสัญลักษณ์ “<*>” ให้คอมพิวเตอร์สามารถเติมค่าต่าง ๆ ที่เรียกกว่า Parameter ลงไปได้ ซึ่งจาก Template ดังกล่าวสามารถสร้างเป็น Log ได้หลายรูปแบบดังนี้ จะเห็นได้ว่าจาก Template เพียงอันเดียว สามารถสร้าง Log ที่แตกต่างกันได้จำนวนนับไม่ถ้วน  การทำงานของ Log parser นั้นเสมือนกันการทำย้อนกลับจากสิ่งที่กล่าวไปข้างต้น Log parser จะทำหน้าที่แยก Parameter และ Template ออกจากกัน ทำให้การวิเคราะห์ Template ที่มีจำนวนไม่มากนักนั้นทำได้ง่ายกว่า Log parser approaches  การทำ Log parser นั้นสามารถทำได้หลายวิธี ซึ่งสามารถแบ่งได้ตามยุคสมัยดังนี้ Rule-based pattern matching เนื่องจากในบางครั้ง Parameter ของ Log มักจะมีลักษณะที่ตายตัว เช่น IP, Email, ตัวเลข, เวลา เป็นต้น ทำให้เราสามารถเขียนเป็นกฏในการแยก Paremeter ในแต่ละรูปแบบออกมาได้ โดยการใช้ Regular Expressions (Regex) เช่น ข้อดี ข้อเสีย Heuristic-based             ในกรณีที่ข้อมูล Log เริ่มมีขนาดใหญ่ขึ้น การทำ Rule-based pattern matching จึงเริ่มทำได้ยาก แต่อย่างไรก็ตามข้อมูล Log ที่มาจาก Template เดียวกันนั้น ถ้านำมาเปรียบเทียบกันในระดับคำต่อคำนั้น จะพบว่าในบางส่วนจะมีตัวอักษรที่เหมือนกัน 100% ซึ่งส่วนนั้นจะมาจาก Template ที่เรากำหนดไว้ตั้งแต่ต้น และอีกส่วนที่ไม่เหมือนกันจะเป็น Parameter ที่ถูกใส่เข้าไปใน Template เพื่อใช้สร้าง Log             ด้วยแนวคิด Heurictic นี้ถ้าเราสามารถแยกได้ว่า Log ใดอยู่ Template เดียวกันได้อย่างแม่นยำ จะได้สามารถแยกส่วนที่เป็น Template กับ Parameter ออกจากกันได้อย่างง่ายดาย ทำให้มี Algorithm จำนวนมากถูกสร้างขึ้นมาโดยมีพื้นฐานจากแนวคิดดังกล่าว เช่น Drain, Prefix-graph  Drain Drain (He et al., 2017) เป็น Algorithm ในการ Parse log โดยใช้ต้นไม้ความลึกคงที่ (Fixed depth tree) ซึ่งโครงสร้างของต้นไม้จะใช้เพื่อค่อยแยกแต่ละ Template ออกจากกัน จากที่แสดงในรูปที่ 1 จะเห็นว่า Template ของ Log จะถูกเก็บอยู่ที่ใบ (Leaf node) ของต้นไม้ แม้ว่าในแต่ละใบอาจจะมีมากกว่าหนึ่ง Template แต่การใช้โครงสร้างดังกล่าวเป็นการลดจำนวน Template ที่จำเป็นต้องคำนึงในแต่ละรอบการวิเคราะห์ Log ได้ การ Parse log โดยใช้ Drain นั้นจะเริ่มที่ราก (Root node) ของต้นไม้ จากนั้นเดินทางตามทิศทางของกิ่งต้นไม้ที่ตรงตามเงื่อนไขของ Log ที่มีไปเรื่อยๆ จนกว่าจะถึงใบ หลังจากนั้นจะเป็นการค้นหาต่อว่า Log ใหม่ที่ถูกใส่เข้ามานั้นมีความคล้ายกับ Template ใดที่อยู่ในใบนั้นมากที่สุด ซึ่งสามารถแบ่งเป็น 2 กรณี ข้อดี ข้อเสีย Machine-learning-based             ในบางกรณีการใช้กฏทั่วไปอาจจะไม่ครอบคลุมข้อมูล Log ที่เกิดขึ้น และวิธีแบบ Heuristic อาจจะยังไม่ได้รับมือกับ Log ที่มีความซับซ้อนสูงได้ การใช้โมเดลที่ผ่านการเรียนรู้จากข้อมูล Log จำนวนมากจึงเป็นอีกแนวทางหนึ่งที่ทำได้ ข้อสังเกตของการใช้ Machine learning คือ จำเป็นต้องมีชุดข้อมูลสำหรับสอนโมเดล ในกรณี Log นั้นอาจจะมีจำนวนข้อมูลมากก็จริง แต่ก็ไม่มีการกำกับข้อมูลว่า Log นั้นอยู่ใน Template ใด และด้วยจำนวนข้อมูลที่มหาศาลทำให้การสร้างชุดข้อมูลนั้นอาจทำได้ยาก ดังนั้นวิธีการใช้ Machine learning ที่จะกล่าวต่อไปนี้ทั้งหมดจะเป็นวิธีที่ไม่จำเป็นต้องใช้ชุดข้อมูลที่มีการกำกับแล้ว หรือใช้เพียงเล็กน้อยเท่านั้น LogStamp LogStamp (Tao et al. 2022) เป็นโมเดลที่สามารถเรียนรู้ได้เองโดยไม่จำเป็นต้องกำกับข้อมูล ซึ่งการทำงานของ LogStamp นั้นเป็นไปดังรูปที่ 2 เริ่มจาก Historical logs หรือคือข้อมูล Log ที่มีอยู่ โดยไม่มีการกำกับข้อมูล ข้อมูลดังกล่าวจะถูกนำไปหา Sentence embedding และ Word embedding ผ่านการใช้ Bidirectional Encoder Representations from Transformers (BERT) ซึ่งเป็นโมเดลทางภาษาที่ใช้กันอย่างแพร่หลายมากในช่วงปี 2018 ซึ่งการหา Embedding นั้นเหมือนเป็นการวิเคราะห์ความหมายของ Log โดยใช้โมเดลทางภาษา ผลลัพธ์ที่ได้จะเป็น Vector ที่สามารถนำมาคำนวนทางคณิตศาสตร์ได้ ซึ่ง Sentence embedding ที่ได้ออกมานั้นจะเป็นความหมายถึง Log ในระดับประโยค ซึ่งจะถูกนำไปใช้ในการจับกลุ่ม (Clustering) กลุ่มที่ได้นั้นจะถูกตีความว่าเป็น Template ของ Log ดังกล่าวทันที ซึ่ง Log ที่อยู่ในกลุ่มเดียวกัน ก็คือเกิดมาจาก Template...
25 March 2024

บทความ

การปรับค่าความน่าจะเป็นเพื่อความเชื่อถือในการทำนาย Probability Calibration
ในบางครั้งการสร้างโมเดลทำนาย เราไม่ได้สนใจเพียงแค่ว่าสิ่งทีทำนายออกมาจะเป็น class อะไร แต่สนใจไปถึงโอกาสหรือความน่าจะเป็นของผลการทำนายเพื่อจะเอาไปคำนวณ risk หรือ expected value อื่น ๆ ต่อไป เชื่อว่าชาว data sci หลาย ๆ คน ถ้าอยากได้ผลการทำนายเป็น probability จะต้องเคยใช้ method .predict_proba ของ scikit learn อย่างแน่นอน แต่รู้หรือไม่ว่าจริง ๆ แล้ว prob ที่ได้จาก model บางประเภทนั้น มันไม่ตรงกับความเป็นจริง เช่น random forest ที่ใช้ probability เป็นสัดส่วนของจำนวน tree ที่ทำนาย class นั้น ๆ ออกมาต่อจำนวน tree ทั้งหมด ซึ่งจะแตกต่างจากโมเดลที่พยายามเรียนรู้และปรับค่า prob โดยตรงจากข้อมูลอย่าง neural network หรือ logistic regression หรือที่ปัญหาที่เรากำลังทำอยู่อาจจะ imbalance และซึ่งเราอาจะมีการ under, upsampling ระหว่างทำก็อาจจะทำให้โมเดลให้ค่า prob ได้ไม่ตรงกับความเป็นจริงเช่นเดียวกัน Reliability Curve แล้วที่บอกว่า prob มันไม่ตรง มันดูยังไง ก่อนอื่นเลย เราจะแนะนำให้ทุกท่านรู้จักกับกราฟนึงที่ชื่อว่า reliability curve (หรือ calibration curve) ซึ่งถ้าเอาโดยย่อมันคือการเทียบเลยว่า prob ที่โมเดลทำนายกับ prob ที่เกิดจริงใน test set ตรงกันรึเปล่า โดยที่ reliability curve วิธีทำมันก็ง่าย ๆ ดังแสดงในขั้นตอนด้านล่าง หรือที่จริงถ้าใช้ sklearn ก็เรียก function sklearn.calibration.calibration_curve ได้เลย โดยที่ถ้าหาก probability ที่โมเดลเราทำนายออกมามันตรงกับความจริง กราฟควรจะเป็นเส้นตรงตามแนวเส้นทแยงมุม แต่ถ้าโมเดลมันให้ prob ไม่ตรงเส้นมันก็จะไม่ค่อยอยู่ตรงเส้นทแยงมุมเท่าไหร่ ตัวอย่างดังรูปด้านล่าง โดยสรุปก็คือโมเดลที่สร้างเส้นนี้มักจะทายค่าแบบกลาง ๆ เช่น ระหว่าง 0.4-0.6 แต่จะไม่ค่อยมั่นใจแบบทาย prob ที่ 0 หรือ 1 เลย How to Measure The Preciseness of Probability โดยวิธีการวัดว่าโมเดลเราให้ prob ได้เพี้ยนมากน้อยเท่าไหร่สามารถวัดได้ด้วย Brier score ดังสูตรด้านล่าง ซึ่งมันก็เป็นแค่การลบ โดยถ้าหาก Brier score มีค่ามากแสดงว่าโมเดลเราเพี้ยนเยอะ [latexpage] $BS = \frac{1}{n} \sum_{i=1}^{n} (\hat{p}(y_i) – y_i)^2$ โดยตัวแปร Calibration Method โดยที่เราสามารถปรับ probability ให้ตรงกับความเป็นจริงได้ด้วยการทำ probability calibration นั่นเอง โดยการทำ probability calibration นั้นจะนับว่าเป็นการทำ post processing หรือเป็นกระบวนการที่เกิดขึ้นหลังจากเรา train AI model เรียบร้อยแล้ว ซึ่งการทำ probability calibration นั้นควรจะทำบน validation set เนื่องจากว่าบน training set นั้นมีโอกาสที่ model เราจะ overconfidence อยู่แล้ว เพราะมันเคยเห็นคำตอบมาก่อนหน้าแล้ว โดยที่การทำ probability calibration นั้นจะมี algorithm อยู่หลายอันด้วยกัน แต่ในบทความนี้จะยกตัวอย่างสองวิธี ได้แก่ platt scaling และ isonotic regression Platt Scaling ใช้เมื่อกราฟ reliability curve ของโมเดลหน้าตาเหมือน sigmoid function (เส้นสี xxx ในภาพที่ xxx ด้านบน) ซึ่งโดยตั้งต้นแล้วตัวมันเองก็ถูกคิดค้นขึ้นมาเพื่อ map ระหว่างผลลัพธ์ของโมเดล SVM (ที่มีค่าระหว่าง -inf ไปถึง +inf) ไปเป็น probability (ที่มีค่าระหว่าง 0 ถึง 1) ซึ่งถ้าเราคุ้นเคยกับการใช้งานแบบนี้มาก่อนจะนึกได้ว่าที่จริงมันคือ sigmoid function เลยนี่นา ซึ่งถ้าพูดให้ถูกตัว Platt scaling มันเหมือน sigmoid function ที่เป็นสามารถเรียนรู้จากข้อมูลได้ โดยจะเห็นได้ว่าสมการของมันจะมีหน้าตาที่คล้าย sigmoid function พอสมควร $P(y = 1 | f) = \frac{1}{1 + \exp(Af + B)}$ โดยจากสมการนั้น โดยข้อดีของ Platt Scaling นั้นคือมันใช้ข้อมูลที่น้อย (น้อยกว่า isotonic regression ที่จะกล่าวถึงต่อไป) ก็สามารถให้ผลลัพธ์การ calibrate ที่ดีได้ แต่ข้อเสียคือไม่ค่อย flexible กล่าวคือจะทำงานได้ดีกับโมเดลที่ให้ probability บน reliability curve แบบ sigmoid เท่านั้น Isotonic Regression ในส่วนของ Isotonic Regression นั้นค่อนข้างจะ flexible กว่าตัวของ Platt Scaling ตรงที่สามารถทำงานบน reliability curve แบบใดก็ได้ แต่ก็ต้องแลกมาด้วยการใช้ข้อมูลจำนวนที่มากกว่าในการ fit ตัวมัน (มี dataset สำหรับ calibrate probability มากกว่า 1,000 จุด) โดยตัวมันเองจะมี function เหมือนขั้นบันได ที่จะค่อย ๆ ปรับความยาวแต่ละขั้น และไล่ขึ้นไปให้ map...
21 March 2024

บทความ

บทบาทของปัญญาประดิษฐ์ในกลยุทธ์ธุรกิจสมัยใหม่ (The role of AI in modern business strategies)
ปัญญาประดิษฐ์ (AI) กลายเป็นพลังแห่งการเปลี่ยนแปลง และได้ปฏิวัติหลายสิ่งหลายอย่างในชีวิตเรา รวมถึงปฏิวัติวิธีการทำธุรกิจด้วย ความก้าวหน้าอันรวดเร็วของเทคโนโลยี AI ได้นำไปสู่การบูรณาการ AI เข้ากับกลยุทธ์ธุรกิจสมัยใหม่ AI ได้มอบโอกาสมากมายให้ธุรกิจสามารถเจริญเติบโตได้ในสภาพแวดล้อมที่มีการแข่งขันสูงขึ้น ตั้งแต่การปรับปรุงการดำเนินงานไปจนถึงการยกระดับประสบการณ์ของลูกค้า ในบทความนี้ เราจะมาลงลึกบทบาทของ AI ในกลยุทธ์ธุรกิจสมัยใหม่ และสำรวจกันว่า AI กำลังเปลี่ยนอุตสาหกรรมทั่วโลกไปอย่างไร 1. ระบบอัตโนมัติและความมีประสิทธิภาพ (Automation and Efficiency) ประโยชน์หลักประการหนึ่งของ AI ในกลยุทธ์ธุรกิจ คือ ความสามารถในการทำให้งานและกระบวนการต่าง ๆ ดำเนินไปได้อย่างอัตโนมัติ ซึ่งจะนำไปสู่การเพิ่มประสิทธิภาพและผลผลิต ธุรกิจต่าง ๆ สามารถปรับปรุงงานที่ซ้ำซากและน่าเบื่อ ซึ่งจะช่วยประหยัดเวลาและทรัพยากรอันมีค่าที่สามารถเอาไปใช้เริ่มต้นทำสิ่งต่าง ๆ ในเชิงกลยุทธ์ได้มากขึ้นด้วยการนำระบบอัตโนมัติ AI มาใช้แทนที่มนุษย์ AI สามารถจัดการกิจกรรมต่าง ๆ ได้อย่างรวดเร็วและแม่นยำ ลดข้อผิดพลาด และเพิ่มประสิทธิภาพการดำเนินงานโดยรวม ตั้งแต่การป้อนข้อมูลและการวิเคราะห์ ไปจนถึงการจัดการสินค้าคงคลังและการบริการลูกค้า 2. การตัดสินใจที่ขับเคลื่อนด้วยข้อมูล (Data-driven Decision Making) ในโลกปัจจุบันที่ถูกขับเคลื่อนด้วยข้อมูล ธุรกิจต่าง ๆ มีข้อมูลจำนวนมหาศาล AI มีบทบาทสำคัญในการช่วยให้องค์กร เข้าใจข้อมูล และสกัดออกมาเป็นข้อมูลเชิงลึกที่สามารถนำไปใช้งานต่อได้ AI สามารถวิเคราะห์ข้อมูลขนาดใหญ่ ตรวจจับ patterns ต่าง ๆ ในข้อมูล และสร้างระบบธุรกิจอัจฉริยะ (business intelligence) ที่มีคุณค่าได้โดยใช้การเรียนรู้ของเครื่อง (machine learning) สิ่งนี้ช่วยให้บริษัท สามารถตัดสินใจจากข้อมูลที่รอบด้าน คาดการณ์แนวโน้มตลาด เพิ่มประสิทธิภาพในกลยุทธ์การตั้งราคา และปรับแต่งประสบการณ์ของลูกค้าได้ละเอียดในระดับรายบุคคล ความสามารถในการใช้ประโยชน์จากข้อมูลด้วย AI จะช่วยให้ธุรกิจมีความก้าวหน้านำคู่แข่ง และช่วยขับเคลื่อนการสร้างนวัตกรรมใหม่ ๆ ให้แก่องค์กร 3. ประสบการณ์ของลูกค้าที่ถูกยกระดับให้ดีขึ้น (Enhanced Customer Experiences) AI ได้ปฏิวัติวิธีที่ธุรกิจใช้เชื่อมโยงกับลูกค้าด้วยการนำเสนอประสบการณ์ที่เป็นส่วนตัวอย่างราบรื่นในช่องทางการติดต่อต่าง ๆ แชทบอทและผู้ช่วยเสมือน (virtual assistants) ที่ขับเคลื่อนโดยการประมวลผลภาษาธรรมชาติ (natural language processing) ช่วยทำให้ธุรกิจ สามารถให้ความช่วยเหลือลูกค้าได้ตลอด 24 ชั่วโมง ทำให้การตอบคำถามและการแก้ไขปัญหาเป็นไปได้อย่างรวดเร็วทันท่วงที ระบบแนะนำ (recommendation engines) ที่ขับเคลื่อนด้วย AI จะวิเคราะห์ความชอบและพฤติกรรมของลูกค้า ซึ่งจะช่วยให้ธุรกิจ สามารถนำเสนอผลิตภัณฑ์และจัดแคมเปญการตลาดที่มีความเหมาะสมจำเพาะเจาะจงกับลูกค้าแต่ละรายได้ นอกจากนี้แล้ว การวิเคราะห์อารมณ์ความรู้สึก (sentiment analysis) ด้วย AI ยังสามารถวัดความพึงพอใจและความคิดเห็นของลูกค้า ซึ่งจะช่วยให้บริษัทสามารถจัดการข้อกังวลต่าง ๆ และปรับปรุงพัฒนาการให้บริการและประสบการณ์โดยรวมของลูกค้าได้แบบเชิงรุก 4. การวิเคราะห์เชิงคาดการณ์และการพยากรณ์ (Predictive Analytics and Forecasting) ความสามารถในการคาดการณ์ของ AI มีคุณค่าเป็นอย่างยิ่งสำหรับธุรกิจที่ต้องการคาดการณ์แนวโน้มตลาด พยากรณ์อุปสงค์ความต้องการ และคาดคะเนถึงความเสี่ยงที่อาจจะเกิดขึ้น AI สามารถสร้างการคาดการณ์ที่แม่นยำด้วยการใช้ประโยชน์จากข้อมูลในอดีต และใช้แบบจำลองการวิเคราะห์เชิงคาดการณ์ ซึ่งจะช่วยเพิ่มประสิทธิภาพการจัดการห่วงโซ่อุปทาน ระดับสินค้าคงคลัง และจัดตารางเวลาในการผลิตสินค้าได้อย่างเหมาะสม แนวทางเชิงรุกนี้ ช่วยลดความสิ้นเปลือง ลดต้นทุน และปรับปรุงการจัดสรรทรัพยากรได้ นอกจากนี้แล้ว โมเดลการประเมินความเสี่ยงด้วย AI ยังสามารถระบุภัยคุกคามและช่องโหว่ที่อาจเกิดขึ้น ซึ่งจะช่วยทำให้ธุรกิจลดความเสี่ยงและสามารถตัดสินใจได้ด้วยข้อมูล ส่งผลดีให้ธุรกิจมีความยั่งยืนได้ในระยะยาว 5. ความได้เปรียบในการแข่งขันและนวัตกรรม (Competitive Advantage and Innovation) การนำ AI มาเป็นตัวช่วยในการวางกลยุทธ์ทางธุรกิจ สามารถสร้างความได้เปรียบในการแข่งขันได้อย่างมีนัยสำคัญโดยการส่งเสริมนวัตกรรมและสร้างความแตกต่างของผลิตภัณฑ์และบริการ (product/service differentiation) AI ช่วยทำกระบวนการอัตโนมัติ เพิ่มประสิทธิภาพการดำเนินงาน และปรับปรุงขั้นตอนการทำงาน ซึ่งจะทำให้ธุรกิจมีความได้เปรียบเหนือกว่าคู่แข่งในเชิงต้นทุนและเวลา นอกจากนี้ ข้อมูลเชิงลึกที่ได้จาก AI และข้อมูลด้านการตลาด ยังอำนวยความสะดวกในการเสาะแสวงหาโอกาสทางธุรกิจใหม่ ๆ ซึ่งจะช่วยให้ธุรกิจสามารถพัฒนาผลิตภัณฑ์ บริการ และโมเดลธุรกิจแบบใหม่ได้ การนำเทคโนโลยี AI มาใช้ จะช่วยให้องค์กรต่าง ๆ สามารถส่งเสริมวัฒนธรรมแห่งนวัตกรรม วางตำแหน่งตัวเองให้เป็นผู้นำอุตสาหกรรม และปรับตัวให้เข้ากับการเปลี่ยนแปลงของตลาดที่ไม่เคยหยุดนิ่งอยู่กับที่ ข้อควรคำนึงด้านจริยธรรมและความท้าทาย (Ethical Considerations and Challenges) แม้ว่าประโยชน์ของ AI ในกลยุทธ์ธุรกิจสมัยใหม่จะมีอยู่มาก แต่ก็มีความจำเป็นอย่างยิ่งที่จะต้องคำนึงถึงจริยธรรมและความท้าทายที่เกี่ยวข้องกับการนำ AI มาใช้ ข้อกังวลด้านความเป็นส่วนตัว ความปลอดภัยของข้อมูล และความลำเอียง (bias) ของอัลกอริทึมเป็นปัญหาสำคัญที่ต้องมีการเฝ้าติดตามอย่างระมัดระวัง ธุรกิจต้องมีความโปร่งใสในการรวบรวมข้อมูล ต้องจัดลำดับความสำคัญในด้านความปลอดภัยของข้อมูล และต้องตรวจสอบระบบ AI อยู่เป็นประจำเพื่อลดความลำเอียงของอัลกอริทึม นอกจากนี้แล้ว องค์กรต้องกำหนดแนวทางและกรอบการทำงานเพื่อจัดการกับข้อกังวลด้านจริยธรรม โดยส่งเสริมการใช้งาน AI อย่างมีความรับผิดชอบ ให้สอดคล้องกันกับค่านิยมและความคาดหวังของสังคม ประเด็นหลักในการพิจารณานำ AI มาใช้ให้เกิดประโยชน์สูงสุด โดยที่ยังสามารถจำกัดปัญหาและความท้าทายที่อาจเกิดขึ้นได้ในขณะเดียวกัน AI กลายเป็นเครื่องมือที่ขาดไม่ได้สำหรับธุรกิจในยุคใหม่ ซึ่งได้เปลี่ยนวิธีการดำเนินงาน การแข่งขัน และการสร้างสรรค์สิ่งใหม่ในองค์กร AI ได้มอบโอกาสมากมาย ให้ธุรกิจเติบโตได้ในภูมิทัศน์ที่มีการเปลี่ยนแปลงอยู่ตลอดเวลา ตั้งแต่ระบบอัตโนมัติและประสิทธิภาพที่เพิ่มสูงขึ้น ไปจนถึงประสบการณ์ของลูกค้าที่ดีขึ้น และการวิเคราะห์เชิงคาดการณ์ องค์กรสามารถสร้างความได้เปรียบในการแข่งขัน ขับเคลื่อนนวัตกรรม และปลดล็อกช่องทางใหม่ ๆ เพื่อเติบโตต่อไป ด้วยการผนึกรวม AI เข้าด้วยกันกับกลยุทธ์ทางธุรกิจ อย่างไรก็ตาม ยังมีความจำเป็นอย่างยิ่งที่ธุรกิจต่าง ๆ จะต้องนำ AI ไปใช้ด้วยกลยุทธ์ที่ครอบคลุม ต่อไปนี้คือข้อควรพิจารณาที่สำคัญบางประการเพื่อเพิ่มประโยชน์สูงสุดในการใช้ AI โดยที่ยังสามารถจำกัดปัญหาและความท้าทายที่อาจเกิดขึ้นได้ในขณะเดียวกัน: 1. กำหนดวัตถุประสงค์ให้ชัดเจน (Define Clear Objectives) กำหนดวัตถุประสงค์ทางธุรกิจของคุณให้ชัดเจน และระบุส่วนที่ AI จะสามารถช่วยเพิ่มมูลค่าได้มากที่สุด ไม่ว่าจะเป็นการปรับปรุงประสิทธิภาพการดำเนินงาน ปรับปรุงประสบการณ์ของลูกค้า หรือการขับเคลื่อนนวัตกรรมก็ตาม การมีวิสัยทัศน์ที่ชัดเจนจะช่วยชี้ช่องทางในการบูรณาการ AI เข้ากับกลยุทธ์ทางธุรกิจของคุณ 2. ลงทุนในโครงสร้างพื้นฐานข้อมูล (Invest in Data Infrastructure) AI ต้องใช้ข้อมูลที่มีคุณภาพสูง ตรวจสอบให้แน่ใจว่าคุณมีโครงสร้างพื้นฐานข้อมูลที่แข็งแกร่งสำหรับทำการรวบรวม จัดเก็บ และประมวลผลข้อมูลอย่างมีประสิทธิภาพ นำแนวทางปฏิบัติในการกำกับดูแลข้อมูล (data governance) มาใช้ตรวจสอบความถูกต้องของข้อมูล ความเป็นส่วนตัว และการปฏิบัติตามข้อกำหนดกฎระเบียบอย่างถูกต้อง 3. ส่งเสริมวัฒนธรรมแห่งการทำงานร่วมกัน (Foster a Culture of Collaboration) การที่จะนำ AI มาใช้ให้ประสบความสำเร็จ ต้องอาศัยความร่วมมือของทีมและแผนกต่าง ๆ ร่วมกันภายในองค์กร ส่งเสริมการทำงานร่วมกันข้ามสายงาน และสร้างวัฒนธรรมที่นำ AI มาใช้เป็นตัวส่งเสริมมากกว่าที่จะเป็นภัยคุกคาม จัดให้มีการฝึกอบรมและให้มีทรัพยากรที่จะช่วยให้พนักงานเข้าใจเทคโนโลยี AI และผลลัพธ์ที่จะเกิดขึ้นตามมา 4. เริ่มต้นจากเล็ก ๆ ก่อน...
26 December 2023

บทความ

8 เทรนด์แห่งอนาคตสู่การเปลี่ยนแปลงทางธุรกิจด้วย Generative AI ในปี 2024
Generative AI เป็นเครื่องมืออเนกประสงค์ที่มีประโยชน์ในด้านต่าง ๆ จนอาจจะกลายเป็นเทคโนโลยีที่ใช้งานกันทั่วไป นอกจากนี้ บรรดานักวิจัยยังคาดหวังว่ามันจะกลายเป็นปัญญาประดิษฐ์ที่สามารถทำงานได้ทุกอย่างเหมือนที่มนุษย์ทำได้ ซึ่งในบทความนี้ จะมาเล่าให้ฟังว่า Generative AI ได้เข้ามามีบทบาทและกลายเป็นเทคโนโลยีที่ใช้กันทั่วไปในส่วนใดบ้าง มาลองดูกัน เริ่มด้วยการสำรวจความคาดหวังของผู้บริหารเกี่ยวกับเทรนด์ Generative AI ในปี 2024 ซึ่งสรุปผลออกมาได้ว่า   ซึ่งในยุคแห่งการเปลี่ยนแปลงนี้ เราจะสามารถแจกแจงเทรนด์ต่าง ๆ ของ Generative AIออกมาเป็นรูปร่างดังนี้ นอกเหนือจากสิ่งที่เล่ามาข้างต้น เรามาลองดูกันว่า Generative AI ได้เข้ามามีบทบาทหรือเข้ามาช่วยทำงานในด้านใดบ้าง การสร้างข้อความ รูปภาพ และวิดีโอ Generative AI สามารถสร้างเนื้อหาได้หลากหลายรูปแบบ ไม่ว่าจะเป็นเอกสารที่เป็นลายลักษณ์อักษร รูปภาพ วิดีโอ และเสียง ซึ่งในส่วนของธุรกิจนั้นกำลังมีการสำรวจแอปพลิเคชันต่าง ๆ อย่างจริงจังเพื่อให้ตัวแอปพลิเคชันมีฟังก์ชันเฉพาะตัวและมีคุณสมบัติมากกว่าแอปพลิเคชันทั่ว ๆ ไป โดยแนวโน้มของ Generative AI สำหรับการสร้างข้อความ ได้แก่ ส่วนแนวโน้มของ Generative AI สำหรับการสร้างรูปภาพ จะก้าวไปสู่ความสมจริงมากขึ้นด้วยภาพที่มีความละเอียดสูง ลดข้อแตกต่างระหว่างภาพจริงและภาพสังเคราะห์ซึ่งจะสามารถนำภาพไปใช้ในอุตสาหกรรมบันเทิง และการทำระบบเสมือนจริง (Virtual Reality) ในสมจริงมากยิ่งขึ้น นอกจากนี้ยังช่วยเพิ่มศักยภาพให้กับนักออกแบบให้สามารถสร้างผลิตภัณฑ์ที่หลากหลายมากยิ่งขึ้น เช่นเดียวกับการสร้างวิดีโอที่จะทำให้การผลิตวิดีโอมีคุณภาพและตรงกับแต่ละกลุ่มเป้าหมายมากยิ่งขึ้นผ่านการใช้เครื่องมือผลิตวิดีโอด้วย AI รวมถึงสามารถลดเวลาและต้นทุนที่เกี่ยวกับข้องกับการผลิตวิดีโอได้เช่นกัน การสร้างดนตรี Generative AI กำลังเข้ามาปฏิวัติการสร้างดนตรี โดยโมเดลด้าน AI เหล่านี้สามารถเลียนแบบเสียงของมนุษย์และสร้างเพลงได้ ซึ่งสิ่งนี้ได้สร้างความเป็นไปได้ใหม่ ๆ ให้กับนักดนตรีและนักแต่งเพลง ซึ่งการใช้ AI ไม่ใช่แค่สร้างเพลงใหม่เท่านั้น แต่ AI ยังช่วยกำหนดประสบการณ์ในการฟังเพลงของเราได้ด้วยและในเร็ว ๆ นี้ เราอาจจะมีเพลงประกอบเกมหรือเพลงที่ใช้ในการถ่ายทอดสดที่สามารถปรับปรุงประสบการณ์ภาพและเสียงของเราแบบเรียลไทม์ได้ นอกจากนี้ AI กำลังพยายามเรียนรู้เกี่ยวกับการแสดงออกและอารมณ์ของมนุษย์ผ่านการสังเคราะห์เสียง ซึ่งความก้าวในด้านนี้จะนำไปสู่การแปลแบบเรียลไทม์ และการพากย์เสียงแบบอัตโนมัตินั้นเอง เทคโนโลยี NLP และ AI ต่อเนื่องหลายรูปแบบ Generative AI เข้ามาช่วยเพิ่มประสิทธิภาพในการประมวลผลภาษาธรรมชาติ (NLP) โดย AI จะเข้าใจข้อความ คำพูด และความรู้สึกได้ลึกซึ้งยิ่งขึ้น ซึ่งความก้าวหน้าในครั้งนี้เป็นหัวใจสำคัญของการโต้ตอบเหมือนมนุษย์ตามที่เห็นได้จากผู้ช่วยเสียง (Voice Assistants) และแชทบอทของบริษัทต่าง ๆ ที่สามารถโต้ตอบกับผู้ใช้ได้อย่างเป็นธรรมชาติยิ่งขึ้น โดยทั่วไปตัวโมเดลจะประมวลผลจากข้อมูลรูปแบบเดียวซึ่งจะมีข้อมูลเชิงลึกที่จำกัด ในลำดับถัดมาได้มีการเรียนรู้เชิงลึกแบบหลายรูปแบบช่วยให้โมเดลสามารถแยกแยะความสัมพันธ์ของข้อมูลรูปแบบต่าง ๆ ได้ เช่น สามารถแปลงข้อความให้เป็นรูปภาพ รูปภาพเป็นวิดีโอ และอื่น ๆ โดยจะเห็นว่าการรวมเทคโนโลยีเข้าด้วยกันทำให้การทำงานมีประสิทธิภาพที่สูงขึ้น โดยเฉพาะในสาขาที่ซับซ้อน เช่น ทางการแพทย์ โดยในด้านของการดูแลสุขภาพ AI จะรวบรวมข้อมูลที่เป็นข้อความและภาพเพื่อช่วยในการประเมินที่แม่นยำมากยิ่งขึ้น แชทบอทที่ขับเคลื่อนด้วย Generative AI Generative AI ได้เข้ามาปรับปรุงความสามารถในการสนทนา ผ่านการเรียนรู้อย่างต่อเนื่องจากการโต้ตอบกับผู้ใช้ ซึ่งการเรียนรู้แบบนี้จะช่วยทำให้เข้าใจความต้องการของผู้ใช้มากยิ่งขึ้นเมื่อเวลาผ่านไป รวมถึงยังสามารถตรวจจับและตอบสนองต่ออารมณ์ความรู้สึกของมนุษย์ได้มากขึ้นเช่นกัน ซึ่งตัวอย่างของแชทบอทที่ปล่อยออกมาในท้องตลาดของไทยในปัจจุบัน คือ Alisa AI เป็นต้น แนวโน้มของ Generative AI ในด้านอุตสาหกรรม ด้านการค้าปลีกและอีคอมเมิร์ซ การค้าปลีกและอีคอมเมิร์ซได้มีการใช้งานแอปพลิเคชันที่ขับเคลื่อนด้วย Generative AI เพิ่มมากขึ้น นวัตกรรมนี้ได้เปลี่ยนแปลงประสบการณ์ของลูกค้าและกลยุทธ์การดำเนินงานต่าง ๆ ซึ่งเทรนของ Generative AI ในปัจจุบันและในอนาคต ประกอบไปด้วย ในด้านของความคาดหวังของผู้บริหารต่อการค้าปลีกคือ สามารถนำมาวิเคราะห์ข้อมูลของลูกค้า, จัดการสินค้าในคลัง และมุ่งเน้นไปที่การสร้างเนื้อหาต่าง ๆ เพื่อยกระดับในการสื่อสารและการตลาด โดยตัวอย่างของการนำ AI มาใช้ด้านการค้าปลีกและอีคอมเมิร์ซ ได้แก่ Shopify Sidekick บอทที่ช่วยจัดการร้านค้าออนไลน์, Stitch Fix ทำโฆษณาผ่านการใช้ AI, BloomsyBox อีคอมเมิร์ซแชทบอท, เครื่องมือที่ใช้ในการแนะนำของ Amazon, การลองสินค้าเสมือนจริงผ่านแชทบอทของ Google Walmart, ผู้ช่วยช้อปปิ้งเสมือนจริงของ Mercari ด้านการดูแลสุขภาพ การดูแลสุขภาพถือเป็นด้านหนึ่งที่มีการใช้นวัตกรรมด้าน AI โดยส่วนที่ได้รับผลประโยชน์มากที่สุด ได้แก่ การพัฒนายา, การติดตามผู้ป่วย และการแพทย์ทางไกล ซึ่งแนวโน้มด้านการดูแลสุขภาพผ่านการใช้ Generative AI ได้แก่ ความคาดหวังของผู้บริหารในส่วนของการดูแลสุขภาพคือ ใช้สำหรับตรวจสอบข้อมูลเวชระเบียน, นำมาสร้างแชทบอททางการแพทย์ และนำมาใช้ในแอปพลิเคชันเพื่อประมวลผลภาพสำหรับการผ่าตัด โดยตัวอย่างของการนำ AI มาใช้ ได้แก่ การทดลองพัฒนายาผ่านการใช้ Generative AI ของ Insilico Medicine, แพลตฟอร์ม AI เพื่อสุขภาพสมองของ DiagnaMed, แบบจำลองของ Absci สำหรับออกแบบแอนติบอดี้ บริการทางการเงินและการธนาคาร บริการทางการเงินและการธนาคารกำลังอยู่ระหว่างการเปลี่ยนแปลงผ่านการใช้ AI ไม่ว่าจะเป็นการตรวจจับการฉ้อโกง การจัดการความเสี่ยง และระบบอัตโนมัติในการบริการลูกค้า โดยแนวโน้มตลาดด้านอุตสาหกรรมการเงิน ได้แก่ ตัวอย่างของงานที่ใช้ Generative AI ได้แก่ แชทบอทของ Morgan Stanley สำหรับให้คำปรึกษาทางการเงิน, IndexGPT ของ JPMorgan Chase เพื่อช่วยตัดสินใจด้านการลงทุน บทสรุป จากสิ่งที่เล่ามาทั้งหมด Generative AI ถือเป็นนวัตกรรมที่อยู่ในระดับแนวหน้าซึ่งมีแนวโน้มที่จะพัฒนาไปอีกไกลในอนาคต ทั้งภายในองค์กรเองและใช้ในการโต้ตอบกับผู้ใช้งาน แต่ในอีกมุมมองหนึ่ง เราควรคำนึงถึงจริยธรรมในการประยุกต์ใช้ Generative AI ด้วย โดยหันมาสนใจด้านการคุ้มครองทรัพย์สินทางปัญญาไม่ว่าจะเป็นสิทธิบัตรหรือการจดลิขสิทธิ์ให้กับสิ่งที่สร้างจาก AI นอกจากนี้ควรคำนึงถึงความโปร่งใสเพื่อไม่ให้มีการปลอมแปลงข้อมูลเชิงลึก และการปกป้องความเป็นส่วนตัวต่อการพัฒนา AI เพื่อให้มีความน่าเชื่อถือมากยิ่งขึ้น แหล่งที่มา เนื้อหาโดย จุฑาภรณ์ วิภัชภาคไพบูลย์ ตรวจทานและปรับปรุงโดย นนทวิทย์ ชีวเรืองโรจน์
20 December 2023

บทความ

ความตื่นตัวของหุ่นยนต์ที่ปรึกษาด้านการเงิน
ใครที่อยากลงทุน แต่ไม่รู้จะเริ่มยังไง ไม่ต้องกังวลอีกต่อไปเพราะตอนนี้เรามี Robo-Advisor หรือ A.I. ที่จะมาทำหน้าที่เป็นที่ปรึกษาด้านการลงทุน
13 October 2023
PDPA Icon

We use cookies to optimize your browsing experience and improve our website’s performance. Learn more at our Privacy Policy and adjust your cookie settings at Settings

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as needed, except for necessary cookies.

Accept all
Manage Consent Preferences
  • Strictly Necessary Cookies
    Always Active

    This type of cookie is essential for providing services on the website of the Personal Data Protection Committee Office, allowing you to access various parts of the site. It also helps remember information you have previously provided through the website. Disabling this type of cookie will result in your inability to use key services of the Personal Data Protection Committee Office that require cookies to function.
    Cookies Details

  • Performance Cookies

    This type of cookie helps the Big Data Institute (Public Organization) understand user interactions with its website services, including which pages or areas of the site are most popular, as well as analyze other related data. The Big Data Institute (Public Organization) also uses this information to improve website performance and gain a better understanding of user behavior. Although the data collected by these cookies is non-identifiable and used solely for statistical analysis, disabling them will prevent the Big Data Institute (Public Organization) from knowing the number of website visitors and from evaluating the quality of its services.

  • Functional Cookies

    This type of cookie enables the Big Data Institute (Public Organization)’s website to remember the choices you have made and deliver enhanced features and content tailored to your usage. For example, it can remember your username or changes you have made to font sizes or other customizable settings on the page. Disabling these cookies may result in the website not functioning properly.

  • Targeting Cookies

    "This type of cookie helps the Big Data Institute (Public Organization) understand user interactions with its website services, including which pages or areas of the site are most popular, as well as analyze other related data. The Big Data Institute (Public Organization) also uses this information to improve website performance and gain a better understanding of user behavior. Although the data collected by these cookies is non-identifiable and used solely for statistical analysis, disabling them will prevent the Big Data Institute (Public Organization) from knowing the number of website visitors and from evaluating the quality of its services.

Save settings
This site is registered on wpml.org as a development site. Switch to a production site key to remove this banner.