Data Analytics

Data Analytics

ข่าวและบทความที่เกี่ยวข้อง

All Data Analytics

PostType Filter En

บทความ

Data Visualization ช่วยเราเข้าใจแผ่นดินไหวได้อย่างไร
แผ่นดินไหวเป็นภัยธรรมชาติที่สร้างความเสียหายมหาศาลต่อชีวิตและทรัพย์สิน การเข้าใจรูปแบบการเกิดแผ่นดินไหวผ่านการวิเคราะห์ข้อมูลและการแสดงผลข้อมูลเชิงภาพ (Data Visualization) จึงมีบทบาทสำคัญอย่างยิ่งในการเตรียมพร้อมรับมือและลดผลกระทบจากภัยพิบัติดังกล่าว บทความนี้นำเสนอวิธีการใช้ Data Visualization เพื่อทำความเข้าใจแผ่นดินไหวในมิติต่าง ๆ ความสำคัญของ Data Visualization ในการศึกษาแผ่นดินไหว การแสดงผลข้อมูลเชิงภาพช่วยให้เราสามารถเห็นรูปแบบและความสัมพันธ์ของข้อมูลที่ซับซ้อนได้อย่างชัดเจน สำหรับปรากฏการณ์แผ่นดินไหว การใช้ Data Visualization มีประโยชน์หลายประการ ดังนี้ การติดตามแผ่นดินไหว ณ เวลาปัจจุบัน (Real-time earthquake monitoring) ปัจจุบันมีระบบติดตามแผ่นดินไหวแบบเรียลไทม์หลายระบบ เช่น USGS Earthquake Map ที่จัดทำโดยสำนักงานธรณีวิทยาแห่งสหรัฐอเมริกา (USGS) โดยสามารถแสดงข้อมูลแผ่นดินไหวทั่วโลกแบบเรียลไทม์ (ภาพที่ 1) แสดงแผนที่ตำแหน่งการเกิดเหตุแผ่นดินไหวที่เกิดขึ้นล่าสุด เพื่อให้สามารถเข้าใจได้โดยง่าย แผนที่การเกิดแผ่นดินไหวจึงมักอยู่ในรูปแบบพื้นฐานที่ใช้แสดงตำแหน่งของแผ่นดินไหว โดยนิยมใช้จุด (Points) ที่มีขนาดและสีแตกต่างกันเพื่อแสดงความรุนแรงของแผ่นดินไหว การประยุกต์ใช้ Data Visualization ในการศึกษาแผ่นดินไหวมีความท้าทายสำคัญประการแรกคือการจัดการกับข้อมูลขนาดใหญ่ที่ไหลมาจากเครือข่ายเซนเซอร์จำนวนมาก ซึ่งจำเป็นต้องพัฒนาระบบการประมวลผลและแสดงผลแบบเรียลไทม์เพื่อให้ข้อมูลล่าสุดพร้อมใช้งานสำหรับการวิเคราะห์และติดตามสถานการณ์ นอกจากนี้ การออกแบบ Visualization ที่ซับซ้อนให้เข้าใจง่ายสำหรับประชาชนทั่วไปยังเป็นอีกความท้าทาย เพื่อให้การสื่อสารความเสี่ยงและการเตรียมพร้อมรับมือภัยพิบัติเป็นไปอย่างมีประสิทธิภาพ ปัจจุบัน สถาบันข้อมูลขนาดใหญ่ (องค์การมหาชน) ได้มีการจัดทำแดชบอร์ดติดตามสถานการณ์การเกิดแผ่นดินไหวในประเทศไทยและประเทศข้างเคียง (ภาพที่ 2) ซึ่งสามารถติดตามการกระจายตัว ขนาด ความถี่ รวมถึงแนวโน้มเชิงเวลาของ aftershocks ที่ปกติจะมีการเกิดขึ้นตามมาหลังจากการเกิดแผ่นดินไหวลูกใหญ่ (mainshock) ซึ่งโดยปกติจำนวน ขนาด และความถี่ของ aftershocks จะลดลงตามเวลาที่ผ่านไปหลังจากการเกิด mainshock ตามที่แสดงในภาพที่ 3 Data Visualization จึงเป็นเครื่องมือสำคัญในการทำความเข้าใจปรากฏการณ์แผ่นดินไหว การพัฒนาเทคนิคการแสดงผลข้อมูลที่มีประสิทธิภาพจะช่วยให้ประชาชนทั่วไปเข้าใจความเสี่ยงและเตรียมพร้อมรับมือกับแผ่นดินไหวได้ดียิ่งขึ้น ซึ่งในที่สุดจะช่วยลดความสูญเสียต่อชีวิตและทรัพย์สินจากภัยพิบัติทางธรรมชาติชนิดนี้ เอกสารอ้างอิง
28 April 2025

บทความ

Data Analytics คืออะไร ? และมีอะไรบ้าง ? ทำไมทุกองค์กรถึงให้ความสำคัญ
“Data is the new oil” เป็นประโยคที่ ไคลฟ์ ฮัมบี (Clive Humby) นักคณิตศาสตร์ชาวอังกฤษพูดไว้เมื่อปี 2006 เปรียบเปรยว่าข้อมูลเป็นเหมือนทรัพยากรที่มีค่าไม่ต่างจากน้ำมัน ถือเป็นคำกล่าวที่แสดงให้เห็นถึงความสำคัญของข้อมูลในยุคนี้ได้เป็นอย่างดี เพราะปัจจุบันข้อมูลได้กลายมาเป็นเครื่องมือสำคัญในการแข่งขันของโลกธุรกิจยุคใหม่ แต่การมีข้อมูลจำนวนมากแล้วไม่สามารถนำมาใช้งานได้ ก็เหมือนมีแค่น้ำมันดิบ หากไม่ได้ผ่านกระบวนการกลั่นก็ไม่มีประโยชน์ ดังนั้นการวิเคราะห์ข้อมูล หรือ Data Analytics จึงเปรียบเสมือนกระบวนการกลั่นที่เปลี่ยนข้อมูลดิบให้เป็นพลังงานขับเคลื่อนธุรกิจ เป็นขั้นตอนสำคัญที่ทำให้เราสามารถนำข้อมูลมาใช้งานได้อย่างมีประสิทธิภาพ แล้ว Data Analytics คืออะไร ? Data Analytics คือ กระบวนการวิเคราะห์ข้อมูลด้วยเทคโนโลยีสมัยใหม่ เช่น AI (Artificial Intelligence), Machine Learning และเครื่องมือ Data Analytics มาใช้วิเคราะห์ข้อมูลเพื่อหาข้อสรุปของข้อมูลนั้น ๆ ถือเป็นการนำข้อมูลที่ได้มา เข้าสู่กระบวนการแสดงค่า หาความหมาย และสรุปผลที่ได้จากข้อมูลนั้น ๆ  ช่วยให้มองเห็นแนวโน้ม โอกาส และความเสี่ยงต่าง ๆ ทำให้สามารถตัดสินใจบนพื้นฐานของข้อมูลจริงแทนการใช้สัญชาตญาณ หรือประสบการณ์เพียงอย่างเดียว ซึ่งเป็นประโยชน์ต่อการคาดการณ์อนาคต หาแนวโน้มความน่าจะเป็น แนวโน้มคำตอบ หรือจุดที่ต้องแก้ไข ที่จะสามารถช่วยเสริมศักยภาพทางธุรกิจได้  รูปแบบการทำ Data Analytics  การทำ Data Analytics สามารถแบ่งออกได้เป็น 4 ประเภทหลัก ๆ ตามลักษณะและวัตถุประสงค์ ดังนี้ ตัวอย่างเครื่องมือในการทำ Data Analytics (Data Analytics Tools) ความสำคัญของ Data Analytics ในธุรกิจ Data Analytics ยังเป็นส่วนสำคัญของการขับเคลื่อน Digital Transformation ในองค์กร เนื่องจากข้อมูลเชิงลึกที่ได้ จะช่วยให้ธุรกิจค้นพบไอเดียหรือโอกาสใหม่ ๆ ในการเพิ่มรายได้ ลดต้นทุน หรือสร้างนวัตกรรม ซึ่งเป็นปัจจัยสำคัญที่จะทำให้องค์กรสามารถปรับตัวและเติบโตได้อย่างรวดเร็วในโลกดิจิทัลที่มีการแข่งขันสูง หลายองค์กรตระหนักถึงความสำคัญของการใช้ Data Analytics เพื่อปรับปรุงกระบวนการทำงาน ลองมาดูตัวอย่างของการนำ Data Analytics ไปใช้งานในธุรกิจด้านต่าง ๆ กัน องค์กรสามารถใช้การวิเคราะห์ข้อมูลเพื่อทำความเข้าใจพฤติกรรมของลูกค้า ทำให้สามารถสร้างแคมเปญการตลาดที่มีประสิทธิภาพมากขึ้น รวมถึงการทำ Personalization ที่สามารถนำเสนอสินค้าหรือบริการที่ตรงกับความต้องการของลูกค้ามากที่สุด ตัวอย่างเช่น Netflix แพลตฟอร์มสตรีมมิ่งคอนเทนต์ระดับโลก ได้มีการนำ Data Analytics มาใช้ประโยชน์ในการรวบรวมพฤติกรรมการใช้งานของสมาชิก ด้วยเทคโนโลยี AI ทั้งอุปกรณ์ที่ใช้ในการรับชม ประวัติการดู คำค้นหา หรือผู้คนชอบดูภาพยนตร์และคอนเทนต์แนวไหนมากที่สุด จากนั้นนำมาวิเคราะห์พฤติกรรมของสมาชิกแต่ละคน เพื่อนำข้อมูลเหล่านี้มาใช้ในการแนะนำภาพยนตร์ หรือคอนเทนต์ ที่สมาขิกสนใจจะดูได้ตรงตามความต้องการ การวิเคราะห์ข้อมูลสามารถช่วยให้บริษัทคาดการณ์ความต้องการของสินค้าและบริหารจัดการสินค้าคงคลังได้อย่างมีประสิทธิภาพ ทำให้ลดปัญหาสินค้ามากเกินหรือน้อยเกินไป และช่วยลดต้นทุนทางธุรกิจ ตัวอย่างเช่น Amazon แพลตฟอร์มขายสินค้าออนไลน์ชื่อดัง ที่โดดเด่นในการใช้ Data Analytics โดยมีการใช้ Machine Learning และ Artificial Intelligence เพื่อวิเคราะห์ข้อมูลการสั่งซื้อและคาดการณ์แนวโน้ม ทำให้การจัดการสินค้าคงคลังมีความรวดเร็วและแม่นยำ การใช้ Data Analytics มาช่วยในการประเมินและจัดการความเสี่ยงในด้านต่าง ๆ จะช่วยให้ธุรกิจสามารถตรวจจับความผิดปกติและป้องกันการฉ้อโกงได้อย่างรวดเร็วจากสัญญาณความผิดปกติจากข้อมูล  ทำให้สามารถแก้ไขปัญหาได้อย่างทันท่วงที ตัวอย่างเช่น บริษัทประกันภัยชั้นนำอย่าง AON ใช้ Data Analytics ในการบริหารจัดการและควบคุมความเสี่ยงที่เกี่ยวข้องกับการประกัน ซึ่งข้อมูลที่รวบรวมมาจากพฤติกรรมลูกค้าช่วยให้พวกเขาสามารถวางแผนและจัดการความเสี่ยงได้อย่างมีประสิทธิภาพ การใช้ Data Analytics ในการวิเคราะห์ข้อมูลพนักงานสามารถช่วยให้ผู้บริหารตัดสินใจในเรื่องการจ้างงาน การเลื่อนตำแหน่ง การฝึกอบรม และการระบุปัญหาที่เกิดขึ้นในองค์กรก่อนที่จะกลายเป็นปัญหาใหญ่  ตัวอย่างเช่น บริษัท Google มีการใช้ HR Analytics เพื่อทำความเข้าใจและปรับปรุงกระบวนการที่เกี่ยวข้องกับพนักงานทั้งหมด ตั้งแต่การจ้างงานจนถึงการเพิ่มคุณภาพชีวิตที่ทำงานด้วยการสำรวจและการวิเคราะห์ข้อมูล เพื่อรวบรวมความคิดเห็นและข้อมูลจากพนักงาน ในการปรับปรุงกระบวนการต่าง ๆ ให้เหมาะสมกับวัฒนธรรมองค์กรและสร้างสภาพแวดล้อมที่ดีขึ้น การนำ Data Analytics มาใช้ในการวิเคราะห์กระบวนการทำงานหรือขั้นตอนการผลิต จะช่วยให้สามารถค้นพบจุดที่เป็นคอขวด และเพิ่มประสิทธิภาพการดำเนินงานได้อย่างเป็นรูปธรรม ตัวอย่างเช่น Grab แพลตฟอร์มที่อำนวยความสะดวกให้แก่ผู้ใช้งานผ่านทางแอปพลิเคชันบนมือถือ ทั้งบริการเรียกรถรับส่ง บริการส่งพัสดุ และบริการรับส่งอาหาร มีการใช้ AI วิเคราะห์ข้อมูลการสั่งอาหารของลูกค้า โดยแนะนำร้านอาหารที่ชอบ ร้านอาหารที่มีโปรโมชั่นน่าสนใจ หรือร้านอาหารใกล้บ้าน และประมวลผลสำหรับผู้ให้บริการ Grab เพื่อให้บริการได้สะดวกมากยิ่งขึ้น การวิเคราะห์ข้อมูลลูกค้าจากหลายช่องทาง ทั้งข้อมูลการซื้อ พฤติกรรมการใช้งาน Social Media ทำให้เข้าใจความต้องการ ความชอบและ Pain Points ของลูกค้าได้ลึกซึ้งมากยิ่งขึ้น ส่งผลให้สามารถพัฒนาสินค้าและบริการให้ตรงใจลูกค้ามากขึ้นด้วย ตัวอย่างเช่น McDonald’s แบรนด์อาหารฟาสต์ฟู้ดที่มีจำนวนสาขาทั่วทุกมุมโลก ก็มีการทำ Data Analytics ในการเก็บข้อมูล เช่น รายการสั่งซื้อ เมนูที่ลูกค้าชอบ และการคอมเมนต์ตามแพลตฟอร์ม Social Media ต่าง ๆ นอกจากนี้ ยังใช้ AI ในการวิเคราะห์ข้อมูลกลุ่มเป้าหมาย เช่น ที่ตั้งของร้านมีผลต่อการเข้าใช้บริการของลูกค้าหรือไม่ ชุดเซตเมนูอย่าง Happy Meal เหมาะกับลูกค้าประเภทไหนบ้าง หรือเทรนด์การตลาดที่กำลังเป็นกระแส เพื่อทำการตลาดและนำเสนอเมนูที่ลูกค้าชอบ ที่ตอบโจทย์ความต้องการของลูกค้าให้ได้มากที่สุด จากตัวอย่างที่กล่าวมา จะเห็นได้ว่า Data Analytics มีบทบาทสำคัญต่อความสำเร็จของธุรกิจในยุคดิจิทัล องค์กรที่นำเทคโนโลยีมาวิเคราะห์ข้อมูล จะสามารถใช้ข้อมูลเชิงลึกเพื่อแก้ปัญหา วางแผนกลยุทธ์ และตัดสินใจได้อย่างแม่นยำ ธุรกิจที่ให้ความสำคัญกับ Data Analytics จะได้เปรียบในการแข่งขัน เพราะสามารถเข้าใจพฤติกรรมผู้บริโภค คาดการณ์แนวโน้ม และปรับตัวได้รวดเร็ว นอกจากนี้ การเก็บข้อมูลสถิติในกระบวนการทำงานยังช่วยให้ค้นพบวิธีการแก้ปัญหาใหม่ ๆ และเพิ่มประสิทธิภาพในทุกด้าน นี่คือเหตุผลว่าทำไม Data Analytics จึงเป็นกุญแจสู่ความสำเร็จขององค์กรชั้นนำในยุคนี้ แหล่งอ้างอิง
19 March 2025

บทความ

ประโยชน์ของ Power BI ที่มีต่อธุรกิจในยุคปัจจุบัน
Power BI คือ เครื่องมือวิเคราะห์ข้อมูลจาก Microsoft ที่เปลี่ยนข้อมูลดิบให้กลายเป็นข้อมูลเชิงลึกที่มีความหมาย เพื่อใช้ในการวิเคราะห์แนวโน้มและผลลัพธ์ที่อาจเกิดขึ้นในอนาคต เป็นหนึ่งในเครื่องมือ Business Intelligence (BI) ที่นิยมในปัจจุบัน เพราะช่วยให้สามารถวิเคราะห์ข้อมูลได้ง่ายขึ้น มีจุดเด่นที่ความสามารถในการเชื่อมต่อข้อมูลจากหลายแหล่ง การสร้างแดชบอร์ดแบบอินเทอร์แอคทีฟ และการใช้งานที่ไม่ซับซ้อน  ในบทความนี้จะนำทุกท่านไปรู้จักกับ Power BI เครื่องมือที่สามารถช่วยในการตัดสินใจที่ชาญฉลาดและรวดเร็วขึ้น ขยายขอบเขตของการวิเคราะห์ข้อมูลและการรายงาน ทำให้สามารถมองเห็นภาพรวมของธุรกิจได้อย่างละเอียดและชัดเจน องค์ประกอบของ Power BI  Power BI ไม่ใช่แค่รวบรวมและวิเคราะห์ข้อมูลเท่านั้น แต่ยังช่วยแสดงข้อมูลในรูปแบบที่เข้าใจง่าย สวยงาม และมีประสิทธิภาพ ทำให้เห็นภาพรวมของธุรกิจอย่างชัดเจน ทำให้สามารถวางแผนล่วงหน้าได้อย่างมั่นใจ ซึ่งมีองค์ประกอบหลักที่ช่วยให้การทำงานดำเนินไปได้อย่างง่ายดายดังนี้ 1. Power BI Desktop คือซอฟต์แวร์ Power BI บนคอมพิวเตอร์ที่สามารถเชื่อมข้อมูลจากแหล่งข้อมูลต่าง ๆ เพื่อนำข้อมูลมาวิเคราะห์ แปลงข้อมูล แล้วนำผลลัพธ์ที่ได้มาแสดงผลบนแดชบอร์ด 2. Power BI Service เป็นบริการที่อยู่บนคลาวด์ (Cloud) ทำหน้าที่เป็นศูนย์กลางในการเผยแพร่ แบ่งปัน และเข้าถึงรายงานและแดชบอร์ดที่สร้างขึ้นด้วย Power BI Desktop สามารถแชร์รายงานและแดชบอร์ดให้กับบุคลากรทั้งภายในและภายนอกองค์กร 3. Power BI Mobile เป็นแอปพลิเคชั่น Power BI ที่ทำให้ผู้ใช้สามารถดูข้อมูลการวิเคราะห์บนโทรศัพท์ได้ และจะมีการแจ้งเตือนผู้ใช้แบบ Realtime หากมีการเปลี่ยนแปลงเกิดขึ้น 4. Power BI Gateway เป็นเครื่องมือที่เชื่อมระหว่าง Power BI Service กับแหล่งข้อมูล (Data Sources) ขององค์กร เพื่อให้ผู้ใช้เข้าถึงข้อมูล และนำไปสร้างรายงานกับแดชบอร์ดได้ โดยไม่ต้องย้ายข้อมูลไปอยู่บน Cloud 5. Power BI Embedded เป็นบริการที่ช่วยให้นักพัฒนาซอฟต์แวร์สามารถเชื่อมต่อรายงานและแดชบอร์ดจาก Power BI ไปฝังในแอปพลิเคชั่นขององค์กรได้เลย โดยไม่ต้องเขียนโค้ดส่วนควบคุมและแสดงผลเพิ่มเติม 6. Power BI Report Builder เป็นเครื่องมือในการสร้างและออกแบบรายงานที่มีการแบ่งหน้า Paginated Reports ซึ่งเป็นรายงานที่ผู้ใช้สามารถจัดวางข้อมูล และต้องการพิมพ์เป็นเอกสารออกมา เพื่อให้การตรวจสอบและวิเคราะห์ทำได้ง่ายขึ้น Power BI มีประโยชน์ต่อธุรกิจอย่างไร Power BI เป็นเครื่องมือที่ช่วยให้ธุรกิจสามารถวิเคราะห์ข้อมูลได้อย่างแม่นยำและรวดเร็ว ซึ่งมีประโยชน์อย่างมากต่อธุรกิจในยุคปัจจุบัน ไม่ว่าจะเป็นการวิเคราะห์ข้อมูลการขาย การวิเคราะห์ความพึงพอใจของลูกค้า หรือการติดตามความก้าวหน้าของโครงการ โดยการนำ Power BI เข้ามาใช้จะทำให้องค์กรได้ประโยชน์ 5 ข้อดังนี้ 1. สามารถใช้ร่วมกับซอฟต์แวร์ตัวอื่นของ Microsoft ได้ Power BI เป็นซอฟต์แวร์ของ Microsoft ทำให้ผู้ใช้สามารถใช้ Power BI ร่วมกับซอฟต์แวร์ตัวอื่นได้ ยกตัวอย่างเช่น  2. เป็นซอฟต์แวร์ที่ใช้งานง่าย Power BI ถูกพัฒนาขึ้นให้มี UI ที่ใช้งานง่ายในทุกขั้นตอน เริ่มจากการเชื่อมต่อ Power BI รองรับการเชื่อมต่อกับฐานข้อมูลหลายประเภท เช่น Microsoft Excel, SQL Server และ Google Analytics หลังจากเชื่อมต่อแล้ว ผู้ใช้ก็สามารถสร้างรายงานและแดชบอร์ดได้เลย เพียงนำข้อมูลมาวาง Power BI จะนำข้อมูลไปสร้างเป็นกราฟและแผนภูมิให้เองโดยอัตโนมัติ ในส่วนของการแสดงผล Power BI ยังมีเทมเพลตสำเร็จรูปที่ผู้ใช้สามารถปรับแต่งสี กราฟ และเลย์เอาต์ได้อิสระ นอกจากนี้ยังเลือกอุปกรณ์ที่จะนำรายงานขึ้นไปแสดงผลได้ ทั้งโทรศัพท์ แท็บเล็ต และคอมพิวเตอร์ เพื่อให้การแสดงผลเหมาะกับอุปกรณ์แต่ละประเภท 3. สามารถประมวลผลข้อมูลได้แบบ Real time ข้อมูลที่แสดงผลอยู่บนแดชบอร์ดสามารถอัปเดตได้ตามเวลาที่ต้องการ เหมาะสำหรับข้อมูลที่มีการอัพเดตอยู่เสมอ ซึ่ง Power BI มีตัวเลือกให้ผู้ใช้สามารถอัปเดตข้อมูลแบบ Real time ได้ถึง 3 วิธีด้วยกัน ดังนี้ 4. ลดต้นทุนในการวิเคราะห์ข้อมูล Power BI เป็นซอฟต์แวร์ที่ Microsoft พัฒนาขึ้นมาให้ผู้ใช้งานในองค์กรทุกระดับ หากผู้ใช้เป็นลูกค้า Microsoft Enterprise Agreement อยู่แล้ว ก็สามารถใช้งาน Power BI ได้ฟรี แต่ถ้ายังไม่เคยใช้งาน Power BI จะมีซอฟต์แวร์ให้เลือก 3 แพ็คเกจ ดังนี้ 5. พนักงานทำงานร่วมกันง่ายขึ้น Power BI ช่วยให้บุคลากรทำงานร่วมกันง่ายขึ้น เพราะสามารถทำงานพร้อมกัน ทั้งการดูและแก้ไขรายงานได้แบบ Real time ผ่าน Power BI Service จากนั้นเมื่อทำเสร็จแล้ว ผู้ใช้ก็สามารถแชร์ข้อมูลในฟอร์แมตต่าง ๆ เพื่อนำไปใช้งานต่อได้ ไม่ว่าจะเป็นการแชร์เป็นไฟล์ PDF, Excel, Word หรือ PowerPoint  นอกจากนี้ Power BI ยังเป็นซอฟต์แวร์ที่สามารถนำไปใช้งานได้ในการดำเนินธุรกิจหลายด้าน ดังนี้ เจ้าของธุรกิจสามารถนำ Power BI ไปใช้ เพื่อดูข้อมูลแบบ Real time ด้านประสิทธิภาพการขาย การดำเนินการ และการเติบโตของรายได้ หรือในด้านการวางแผน การนำ Power BI มาใช้จะช่วยให้เจ้าของธุรกิจวิเคราะห์ข้อมูลการขายสินค้าในอดีตของพื้นที่ดังกล่าวว่าเป็นอย่างไร เพื่อนำมาวางแผนการตลาดในอนาคต ฝ่ายการตลาดสามารถนำ Power BI ไปใช้ เพื่อติดตาม KPI ต่าง ๆ ว่ามียอดเป็นอย่างไร เช่น ยอด Click-Through Rates, Conversion Rate บนเว็บไซต์ แล้วนำข้อมูลมาวิเคราะห์ว่ามียอดตามที่คาดหวังหรือไม่ เพื่อพัฒนาเว็บไซต์และคอนเทนต์ต่อ หรือจะเป็นการนำมาใช้สำหรับวิเคราะห์โซเชียลมีเดีย อย่างการให้ Power BI ติดตามยอด Like ยอด Share และ Comment ของโพสต์บนโซเชียลมีเดียขององค์กรว่ามีจำนวนมากแค่ไหน การใช้ Power BI ช่วยให้ฝ่ายขายสามารถสร้างแดชบอร์ดเพื่อติดตาม Sales Metrics เช่น รายได้รวม กำไรสุทธิ และอัตราการปิดยอดขาย ของพนักงานเป็นรายบุคคลและยอดของทีมโดยรวม นอกจากนี้ยังสามารถใช้ Power BI มาวิเคราะห์ข้อมูลดังกล่าว เพื่อคาดการณ์ยอดขายที่อาจจะเกิดขึ้นในอนาคตตามระยะเวลาที่กำหนด ช่วยให้ทีมนำข้อมูลมาตั้งเป้าหมายที่คาดว่าจะทำได้จริงมากที่สุด...
25 February 2025

บทความ

Data Visualization คืออะไร มีประโยชน์ และใช้งานอย่างไร ?
Data Visualization คือ การแสดงข้อมูลที่ผ่านการวิเคราะห์และประมวลผลในรูปแบบที่เข้าใจง่ายและสื่อสารได้ชัดเจน เช่น แผนภูมิ แผนที่ อินโฟกราฟิก หรือรูปภาพ การนำเสนอเหล่านี้ช่วยให้ผู้ใช้งานสามารถมองเห็นแนวโน้ม รูปแบบ และข้อมูลเชิงลึกได้อย่างรวดเร็ว องค์กรจึงสามารถนำข้อมูลไปใช้ในการตัดสินใจที่แม่นยำและมีประสิทธิภาพมากขึ้น เนื่องจากทุกองค์กรมีข้อมูลสำคัญและมีความซับซ้อน ซึ่งข้อมูลปริมาณมากอาจทำให้การวิเคราะห์เกิดความผิดพลาดได้ ด้วยเหตุผลนี้ทำให้องค์กรต้องมีการทำ Data Visualization เพื่อช่วยให้ผู้ใช้งานมองเห็นภาพรวมได้ชัดเจน มีส่วนช่วยในการตัดสินใจทั้งในด้านการบริหารและการวางแผนธุรกิจ โดยการทำ Data Visualization นั้น มีรูปแบบการแสดงผลหลายประเภทด้วยกัน ซึ่งมี 5 รูปแบบที่เป็นที่นิยมนำมาใช้ในการทำงาน คือ ประโยชน์ของ Data Visualization  นอกจากการทำ Data Visualization จะช่วยให้องค์กรเห็นข้อมูลเชิงลึกที่ได้จากการสรุปข้อมูลออกมาแล้ว ยังช่วยให้องค์กรได้ประโยชน์ 5 ข้อดังต่อไปนี้ 1. ทำให้ข้อมูลที่มีความชัดเจนและเข้าใจง่าย การทำ Data Visualization ช่วยพนักงานที่มีความรู้ในระดับที่ต่างกันสามารถเข้าใจข้อมูลชุดเดียวกันได้ นอกจากนี้ยังช่วยเน้นข้อมูลสำคัญ แสดงให้เห็นถึงความสัมพันธ์ของข้อมูล และแนวโน้มของการทำธุรกิจ ที่อาจสังเกตเห็นได้ยากหากดูจากข้อมูลดิบโดยตรง 2. ทำให้ข้อมูลมีความน่าสนใจมากขึ้น การดูข้อมูลดิบที่มีเฉพาะตัวเลขกับตัวอักษรส่งผลให้การดูมีความลำบากจนทำให้เกิดความสับสน แต่การทำ Data Visualization คือการนำข้อมูลมาสร้างเป็น Visual Content ที่มีการใช้ภาพ สี และรูปทรงมาแสดงผล ช่วยให้พนักงานเข้ามามีส่วนร่วมกับข้อมูลได้ง่าย ผ่านการจดจำข้อมูลเป็นภาพ ซึ่งง่ายกว่าการจำเป็นตัวอักษร 3. ช่วยให้บุคลากรตัดสินใจร่วมกันง่ายขึ้น แต่ละทีมย่อมมีวิธีการนำเสนอข้อมูลที่ต่างกัน ทำให้มีแค่พนักงานที่เกี่ยวข้องที่รู้วิธีการตีความข้อมูล การทำ Data Visualization จึงเป็นเหมือนสื่อกลางที่จะเข้ามาช่วยให้แต่ละทีมสามารถนำรายละเอียดที่มีความซับซ้อนมานำเสนอในรูปแบบที่เข้าใจง่ายและชัดเจนเหมือนกัน ช่วยให้บุคลากรทีมอื่นที่ไม่มีความรู้พื้นฐาน สามารถเข้าใจข้อมูลชุดเดียวกันและนำไปใช้งานต่อได้ เช่น ทีมการตลาดสามารถดูกราฟยอดขายเพื่อนำมาข้อมูลมาวางแผนการตลาดให้สอดคล้องกับสถานการณ์ปัจจุบัน 4. ช่วยให้การตัดสินใจทำได้เร็วขึ้น องค์กรสามารถเห็นรายละเอียดของข้อมูลที่ต้องการได้แบบ Real time ผ่านการนำข้อมูลมาแสดงผลบน Interactive Dashboard ที่จะช่วยให้องค์กรเห็นข้อมูลหลายชุดพร้อมกัน และสามารถนำข้อมูลไปใช้ในการตัดสินใจได้เร็วขึ้น โดยไม่ต้องรอให้นักวิเคราะห์ข้อมูลมาสร้างรายงานให้ตลอด 5. ช่วยตรวจจับความผิดปกติและข้อผิดพลาด อย่างที่กล่าวถึงว่าองค์กรมีการเก็บข้อมูลปริมาณมากเอาไว้ การสังเกตความผิดปกติโดยตรงจึงเป็นเรื่องที่ทำได้ยาก แต่การนำข้อมูลมาสรุปในรูปแบบกราฟหรือแผนภูมิ จะทำให้เห็นภาพรวมอย่างชัดเจน ถ้าข้อมูลมีความผิดปกติ เช่น มีค่าที่สูงหรือต่ำเกินไป ก็จะช่วยให้องค์กรสามารถดำเนินการแก้ไขได้อย่างรวดเร็วและมีประสิทธิภาพมากขึ้น ขั้นตอนการใช้งาน Data Visualization  การทำ Data Visualization มีขั้นตอนการใช้งาน 5 ข้อดังนี้ การที่เรารู้ก่อนว่าอยากสื่อสารข้อมูลอะไรออกไปจะช่วยเพิ่มคุณภาพของการทำ Data Visualization ให้มีมากขึ้น เพราะข้อมูลที่อยากสื่อสารออกไปจะช่วยให้องค์กรสามารถเลือกรูปแบบการนำเสนอได้เหมาะสมกับปริมาณข้อมูล การรู้ว่าผู้รับสารเป็นใครจะช่วยให้เราเลือกรูปแบบของการแสดงข้อมูลได้ถูก เช่น ผู้บริหาร ลูกค้า หรือทีมงานด้วยกัน ซึ่งนอกจากการรู้จักผู้รับสารในเบื้องต้น ผู้ออกแบบก็ควรจะรู้ข้อมูลเพิ่มเติมดังต่อไปนี้เพื่อนำมาทำ Data Visualization ได้ถูกต้อง อาทิ ต่อมาคือการเลือกรูปแบบการนำเสนอว่าข้อมูลที่เราต้องการสื่อสารเหมาะสมกับการนำเสนอแบบไหน เพราะการนำเสนอแต่ละรูปแบบมีความเหมาะสมกับข้อมูลที่ต่างกัน การเลือกใช้รูปแบบที่เหมาะสมกับข้อมูลของเราจะช่วยให้กลุ่มเป้าหมายเข้าใจข้อมูลได้ง่ายขึ้น ดังนี้ หลังจากที่เราเลือกรูปแบบได้แล้ว ก็มาถึงการออกแบบที่นอกจากตัวข้อมูลจะต้องมีความถูกต้อง เราจะต้องวางตำแหน่งชื่อข้อมูลและรายละเอียดให้ครบ เพื่อให้ผู้อ่านรู้ว่ากำลังดูข้อมูลอะไร และที่ขาดไม่ได้คือการเลือกใช้สีให้เข้ากับรูปแบบข้อมูลแต่ละส่วน ก็จะช่วยให้ผู้อ่านเข้าใจความหมายที่ต้องการสื่อได้ง่าย มาถึงขั้นตอนสุดท้ายที่เราจะต้องเลือกซอฟต์แวร์มาแสดงข้อมูล ซึ่งในตลาดมีซอฟต์แวร์ให้เลือกจำนวนมาก ยกตัวอย่างซอฟต์แวร์ที่ได้รับความนิยม 5 ตัวดังต่อไปนี้ เพราะฉะนั้น การทำ Data Visualization จึงไม่ใช่การนำข้อมูลมาออกแบบให้มีความน่าสนใจอย่างเดียว แต่เป็นการนำข้อมูลที่มีความซับซ้อน มาสรุปให้เหลือเฉพาะรายละเอียดสำคัญที่จะช่วยให้เข้าใจข้อมูลได้ง่ายภายในเวลาสั้น ๆ ผ่านการแสดงผลในรูปแบบต่าง ๆ เพื่อให้นำผลลัพธ์ไปใช้ประโยชน์ในการดำเนินธุรกิจต่อได้ทันที สำหรับผู้ที่สนใจการทำ Data Visualization สามารถดูข้อมูลเพิ่มเติม ได้ที่ : https://bdi.or.th/big-data-101/picking-chart-for-data-visualization/ แหล่งอ้างอิง
25 February 2025

บทความ

Data-Driven คืออะไร? ทำไมองค์กรยุคใหม่ถึงให้ความสำคัญ
“ข้อมูล” เปรียบเสมือนเชื้อเพลิงที่ขับเคลื่อนองค์กรให้เติบโตและก้าวหน้า องค์กรที่สามารถใช้ข้อมูลอย่างชาญฉลาด ไม่เพียงแค่เพิ่มความได้เปรียบในการแข่งขันเท่านั้น แต่ยังช่วยให้ปรับตัวต่อความเปลี่ยนแปลงของตลาดได้อย่างยั่งยืน การนำแนวคิด Data-Driven มาใช้ในองค์กรคือการเปลี่ยนแปลงก้าวสำคัญ ที่ไม่ใช่เพียงการเก็บข้อมูล แต่เป็นการวิเคราะห์และนำข้อมูลมาสนับสนุนการตัดสินใจเชิงกลยุทธ์ทุกระดับ ตั้งแต่การบริหารงานไปจนถึงการสร้างประสบการณ์ที่ตรงใจลูกค้า ในบทความนี้ เราจะพาคุณไปดูกันว่า Data-Driven คืออะไร มีความสำคัญต่อองค์กรอย่างไร พร้อมทั้งบอกเทคนิคการผลักดันองค์กรให้เป็น Data-Driven Organization รวมถึงยกตัวอย่างองค์กรที่ประสบความสำเร็จจากการใช้ Data-Driven มาขับเคลื่อนองค์กร Data-Driven คืออะไร? Data-Driven คือแนวคิดหรือกลยุทธ์ในการใช้ข้อมูล (Data) เป็นศูนย์กลางในการวางแผน ตัดสินใจ ในการดำเนินธุรกิจ หรือจัดการกับกระบวนการต่าง ๆ ขององค์กร โดยมีเป้าหมายเพื่อเพิ่มความแม่นยำในการวางแผน เพิ่มประสิทธิภาพในการทำงาน และลดความเสี่ยงในการตัดสินใจ ข้อมูลที่นำมาใช้งานสามารถเป็นได้ทั้งข้อมูลภายในองค์กร เช่น ยอดขาย สต็อกสินค้า และข้อมูลภายนอกองค์กร เช่น เทรนด์ตลาด พฤติกรรมผู้บริโภค โดย Data-Driven จะมีลักษณะสำคัญ 3 ข้อ คือ 1. มีการใช้ข้อมูลเป็นหลัก ทุกการวางแผนหรือการตัดสินใจจะต้องอิงจากข้อเท็จจริงที่ได้จากข้อมูล ไม่ใช่การคาดเดาหรือสัญชาตญาณ 2. มีการรวบรวมและวิเคราะห์ข้อมูล ให้ความสำคัญกับการรวบรวมข้อมูลที่ถูกต้อง ครบถ้วน และนำข้อมูลมาวิเคราะห์เพื่อหา Insights ที่ช่วยขับเคลื่อนธุรกิจ 3. มีการใช้เทคโนโลยีและเครื่องมือที่ทันสมัยช่วยวิเคราะห์ข้อมูล เช่น AI, Machine Learning, BI Tools เพื่อเพิ่มความรวดเร็วและแม่นยำในการประมวลผล ทำไมองค์กรยุคใหม่ให้ความสำคัญกับ Data-Driven? หลังจากโลกเกิดการเปลี่ยนแปลงครั้งใหญ่ ด้วยการเกิดโรคระบาด Covid -19 ที่ส่งผลกระทบไปทั่วโลกทั้งในระดับบุคคลและองค์กร ท่ามกลางความท้าทายนี้ ธุรกิจและหน่วยงานต่าง ๆ ได้ตระหนักถึงบทบาทสำคัญของ ข้อมูล เทคโนโลยี และนวัตกรรมใหม่ ๆ ที่ช่วยให้การดำเนินชีวิตและการทำงานเป็นไปอย่างราบรื่น แม้ในสถานการณ์ที่เต็มไปด้วยความไม่แน่นอน จากเดิมที่การทำธุรกิจเน้นการคาดการณ์และตัดสินใจบนผลกำไรเป็นหลัก แต่วันนี้ทุกอย่างเปลี่ยนไป หากขาดข้อมูลและเทคโนโลยี องค์กรอาจสูญเสียความสามารถในการเข้าใจลูกค้าและตอบสนองต่อความต้องการที่แท้จริง การตัดสินใจบนพื้นฐานของข้อมูลจึงไม่ใช่แค่เครื่องมือ แต่เป็น หัวใจสำคัญของการอยู่รอดและความสำเร็จ โดยประโยชน์ของการนำข้อมูลมาใช้กับองค์กรนั้นครอบคลุมในหลายมิติ ดังนี้ การใช้ข้อมูลช่วยให้องค์กรตัดสินใจอย่างมีประสิทธิภาพ โดยอิงจากข้อมูลเชิงลึกและข้อเท็จจริง แทนที่จะใช้สัญชาตญาณหรือการคาดเดา นอกจากนี้การวิเคราะห์ข้อมูลแบบเรียลไทม์ช่วยให้ผู้บริหารสามารถตอบสนองต่อความเปลี่ยนแปลงของตลาดได้ทันท่วงที ทำให้เกิดการวางแผนการตลาดที่ชาญฉลาดและสามารถตัดสินใจได้ว่าจะเลือกดำเนินการโดยใช้กลยุทธ์ใด องค์กรที่ขับเคลื่อนด้วยข้อมูลจะสามารถเข้าใจลูกค้าได้ดี ผ่านการวิเคราะห์ข้อมูลลูกค้าจากรูปแบบพฤติกรรม ความชอบ และข้อเสนอแนะ ซึ่งจะช่วยให้เข้าใจความต้องการของลูกค้า และสามารถออกแบบสินค้า บริการ รวมถึงการวางกลยุทธ์ทางการตลาดที่ตอบโจทย์ความคาดหวังของลูกค้า ด้วยการมอบประสบการณ์เฉพาะบุคคล (Personalization) จนสามารถเพิ่มความพึงพอใจและรักษาลูกค้าไว้ได้เช่นเดียวกัน การใช้ข้อมูลช่วยปรับปรุงกระบวนการทำงานจะช่วยลดต้นทุนและเพิ่มประสิทธิภาพในการดำเนินงานด้านต่าง ๆ  ทั้งยังช่วยให้สามารถวัดผลการดำเนินงานได้อย่างมีประสิทธิภาพ เนื่องจากองค์กรสามารถจัดการข้อมูลได้อย่างเป็นระบบ ทำให้การทำงานภายในองค์กรมีความราบรื่น สามารถใช้ประโยชน์จากข้อมูลที่มีอยู่มาดำเนินงานทางการตลาด และวัดผลได้อย่างเต็มประสิทธิภาพ การวิเคราะห์ข้อมูลช่วยให้มองเห็นโอกาสใหม่ ๆ ในตลาด เช่น แนวโน้มของอุตสาหกรรม พฤติกรรมผู้บริโภคที่กำลังเปลี่ยนแปลง หรือการใช้ข้อมูลมาสนับสนุนการทดลองเพื่อการพัฒนานวัตกรรมใหม่ ๆ ที่มีโอกาสประสบความสำเร็จสูง ข้อมูลช่วยให้องค์กรสามารถคาดการณ์ความเสี่ยง วิเคราะห์แนวโน้มตลาด และวางแผนกลยุทธ์ได้แม่นยำยิ่งขึ้น  สามารถคาดการณ์ความต้องการล่วงหน้าซึ่งการคาดการณ์ที่แม่นยำจะช่วยลดความสูญเสียและเพิ่มโอกาสในการทำกำไรได้มากยิ่งขึ้น การผลักดันองค์กรให้เป็น Data-Driven Organization   ปฏิเสธไม่ได้เลยว่าทุกวันนี้ธุรกิจและอุตสาหกรรมต่าง ๆ ล้วนขับเคลื่อนด้วยเทคโนโลยี การใช้ข้อมูลช่วยให้องค์กรสามารถก้าวนำคู่แข่งได้ สำหรับองค์กรที่ไม่ปรับตัว ไม่สามารถนำข้อมูล และเทคโนโลยีต่าง ๆ มาใช้งานได้ อาจเสียโอกาสในการแข่งขัน เพราะขาดข้อมูลเชิงลึกที่จำเป็น ดังนั้นการเปลี่ยนองค์กรให้ขับเคลื่อนด้วยข้อมูล จึงไม่ใช่เพียงแค่การนำเทคโนโลยีมาใช้ แต่เป็นการปรับเปลี่ยนวัฒนธรรมองค์กรและสร้างโครงสร้างที่รองรับการตัดสินใจบนพื้นฐานของข้อมูล และนี่คือแนวทางที่องค์กรสามารถนำไปใช้เพื่อก้าวสู่การเป็น Data-Driven Organization ได้สำเร็จ 1. สร้างวัฒนธรรม Data-Driven ในองค์กร 2. รวบรวมและจัดการข้อมูลอย่างเป็นระบบ 3. ใช้เครื่องมือและเทคโนโลยีที่เหมาะสม 4. ส่งเสริมการใช้ Data-Driven Insights ในการตัดสินใจ 5. สร้างทีมงานและโครงสร้างที่สนับสนุน Data-Driven 6. ประเมินผลและปรับปรุงอย่างต่อเนื่อง การผลักดันองค์กรให้เป็น Data-Driven Organization ต้องอาศัยทั้งการเปลี่ยนแปลงด้านเทคโนโลยี การสร้างวัฒนธรรมองค์กร และการสนับสนุนจากผู้นำในการวางโครงสร้างที่ชัดเจน รวมถึงส่งเสริมการใช้ข้อมูลในทุกกระบวนการ จะช่วยให้องค์กรสามารถตอบสนองต่อการเปลี่ยนแปลงและเติบโตได้อย่างยั่งยืนในยุคดิจิทัล ตัวอย่างองค์กรที่ประสบความสำเร็จด้วยแนวคิด Data-Driven Amazon Amazon เป็นหนึ่งในตัวอย่างที่โดดเด่นของการใช้ข้อมูลเพื่อสร้างความได้เปรียบในการแข่งขัน ด้วยการนำข้อมูลพฤติกรรมผู้บริโภคมาวิเคราะห์ เช่น Netflix Netflix ใช้ข้อมูลเชิงลึกเพื่อเข้าใจพฤติกรรมการรับชมของผู้ใช้ เช่น Google Google ใช้ข้อมูลเป็นหัวใจสำคัญในการพัฒนาผลิตภัณฑ์และบริการ เช่น Starbucks Starbucks ใช้ข้อมูลในการวางแผนธุรกิจและปรับปรุงประสบการณ์ของลูกค้า เช่น Tesla Tesla ใช้ข้อมูลจากรถยนต์ทุกคันที่เชื่อมต่อกับระบบคลาวด์ เพื่อ Spotify   อีกหนึ่งแคมเปญที่มีชื่อเสียงอย่างมากของ Spotify ที่รู้จักกันในนาม “Spotify Wrapped” ถือเป็นแคมเปญการตลาดสุดโด่งดังที่เริ่มตั้งแต่ปี 2015  จากตัวอย่างที่ยกมา เราจะเห็นได้ว่า Data-Driven คือ แนวคิดสำคัญที่องค์กรชั้นนำระดับโลกนำมาปรับใช้ให้เข้ากับบริบททางธุรกิจ เพราะเมื่อเทคโนโลยีเข้ามามีบทบาทในชีวิต ส่งผลให้เกิดการเปลี่ยนแปลงอย่างรวดเร็วของพฤติกรรมผู้บริโภค “การขับเคลื่อนธุรกิจด้วยข้อมูล” นอกจากจะช่วยให้องค์กรดึงศักยภาพของข้อมูลออกมาใช้ได้อย่างเต็มที่แล้ว ยังช่วยให้เราเข้าใจในพฤติกรรมของผู้บริโภคมากขึ้น รวมถึงช่วยให้แต่ละฝ่ายตัดสินใจได้อย่างมีประสิทธิภาพโดยมีข้อมูลอ้างอิงที่เป็นรูปธรรม และยังช่วยพัฒนาสินค้าและบริการให้ดียิ่งขึ้น ไปจนถึงช่วยให้การบริหารองค์กรมีประสิทธิภาพมากขึ้นอีกด้วย         อ้างอิง : 
10 January 2025

บทความ

Pandas vs. PySpark เลือกเครื่องมือที่ใช่ให้เหมาะกับงานข้อมูลของคุณ?
Pandas และ PySpark เป็นเครื่องมือที่ใช้สำหรับการจัดการและวิเคราะห์ข้อมูลใน Python โดย Pandas เป็นไลบรารียอดนิยมที่ใช้สำหรับการทำงานกับชุดข้อมูลขนาดเล็ก ถึงขนาดกลาง ในหน่วยความจำบนเครื่องเดียว (single-node) ซึ่งมีฟังก์ชันหลากหลายสำหรับการจัดการและวิเคราะห์ข้อมูล ในทางตรงกันข้าม PySpark ซึ่งสร้างขึ้นบน Apache Spark ได้รับการออกแบบมาเพื่อการประมวลผลแบบกระจาย (distributed computing) ทำให้สามารถประมวลผลชุดข้อมูลขนาดใหญ่ได้บนหลายเครื่องใน cluster เดียว Pandas คืออะไร Pandas เป็นหนึ่งใน library แบบ open-source ที่ถูกใช้งานมากที่สุดใน Python สำหรับข้อมูลที่มีโครงสร้างแบบตารางเพื่อการวิเคราะห์ข้อมูลได้หลากหลาย เช่น การกรองข้อมูล การรวมข้อมูล การแปลงข้อมูล รวมถึงการทำความสะอาดและเตรียมข้อมูล จนไปถึงการทำ Machine Learning และอื่น ๆ อีกมากมาย โดยสามารถอ่านไฟล์ได้ในหลายรูปแบบ เช่น CSV, JSON, SQL และรูปแบบอื่นๆ จากนั้นจะสร้างข้อมูลในรูปแบบ DataFrame ซึ่งเป็นวัตถุที่มีโครงสร้างประกอบด้วยแถวและคอลัมน์ (คล้ายกับตาราง SQL) ตัวอย่างการใช้งาน Pandas DataFrame เริ่มต้นใช้งาน Pandas library โดยการ import library และสร้าง DataFrame ด้วยฟังก์ชัน pd.DataFrame โดยได้ผลลัพธ์ออกมาเป็นตารางที่มี index เริ่มที่ index 0 ตัวอย่าง Pandas Transformations ฟังก์ชันต่าง ๆ ในกระบวนการแปลงของ Pandas DataFrame ซึ่งรวมถึงฟังก์ชันทางคณิตศาสตร์ หรือฟังก์ชันทางสถิติ ที่สามารถเลือกทำได้ในทั้ง DataFrame หรือเลือกทำในแต่ละ column เป็นตัวช่วยให้จัดการและวิเคราะห์ข้อมูลยืดหยุ่นมากขึ้น ตัวอย่างเช่น PySpark คืออะไร PySpark เป็น API ของ Python สำหรับ Apache Spark ซึ่งเป็นกรอบการประมวลผลแบบกระจาย (distributed computing) ที่ออกแบบมาสำหรับการประมวลผลชุดข้อมูลขนาดใหญ่ใน cluster ของเครื่องคอมพิวเตอร์ โดยที่ PySpark ช่วยให้การประมวลผลและวิเคราะห์ข้อมูลแบบขนานเป็นไปได้โดยการกระจายการคำนวณไปยังหลาย node ใน cluster ซึ่งทำให้มีความสามารถในการขยายขนาด (scalability) และมีประสิทธิภาพสูงสำหรับงานวิเคราะห์ข้อมูลขนาดใหญ่ ซึ่ง PySpark มี API DataFrame ที่มีลักษณะคล้ายกับ Pandas ทำให้ผู้ใช้งานสามารถทำการจัดการข้อมูลได้คล้ายกัน แต่บนชุดข้อมูลที่กระจายกันอยู่ (Distributed Datasets) ตัวอย่างการใช้งาน PySpark DataFrame PySpark DataFrame เป็นวัตถุที่ไม่สามารถเปลี่ยนแปลงค่าได้ (immutable) ซึ่งหมายความว่าไม่สามารถเปลี่ยนแปลงได้เมื่อสร้างขึ้นแล้ว มีความสามารถในการทนต่อข้อผิดพลาด (fault-tolerant) และการทำ Transformations จะเป็น Lazy evaluation ซึ่งหมายความว่าจะไม่ถูกดำเนินการจนกว่าจะมีการเรียกใช้ Actions เช่น count(), collect(), show() เป็นต้น ซึ่ง PySpark DataFrames จะถูกกระจายอยู่ใน cluster (ซึ่งหมายถึงข้อมูลใน PySpark DataFrames จะถูกจัดเก็บในเครื่องคอมพิวเตอร์ต่าง ๆ ใน cluster เดียว) และการดำเนินการใด ๆ ใน PySpark จะถูกดำเนินการแบบขนานบนเครื่องทั้งหมดใน cluster เริ่มต้นโดยการ import และสร้าง SparkSession และสร้าง DataFrame ด้วย spark.createDataFrame  โดยได้ผลลัพธ์ออกมาเป็นตารางที่ไม่มี index และเมื่อต้องการแสดงตาราง ให้ใช้ฟังก์ชัน show() และสามารถอ่านไฟล์ได้ เช่น การอ่าน csv file ด้วยฟังก์ชัน spark.read.csv ตัวอย่าง PySpark Transformations การทำ Transformations ใน PySpark มีลักษณะเป็นแบบ Lazy evaluation ซึ่งหมายความว่าจะไม่ถูกดำเนินการจนกว่าจะมีการเรียกใช้ Actions ตัวอย่างการแปลงใน PySpark มีดังนี้ ตัวอย่างการใช้งาน PySpark SQL PySpark รองรับการใช้คำสั่ง SQL เพื่อดำเนินการแปลงข้อมูล (Transformation) ซึ่งที่ต้องทำคือการสร้างตาราง (Table) หรือมุมมอง (View) จาก PySpark DataFrame ตัวอย่าง Note !! วิธีการตัดสินใจเลือกระหว่างใช้ Pandas หรือ PySpark การตัดสินใจเลือกระหว่าง Pandas หรือ PySpark มีหลายองค์ประกอบในการตัดสินใจ ไม่ว่าจะเป็น ขนาดของข้อมูล ทรัพยากรในการประมวลผลที่มีอยู่ และความต้องการเฉพาะของงานวิเคราะห์ข้อมูล References บทความโดย ดร.ภิรมย์มาส เตชิตณัฏฐ์ศรุต ตรวจทานและปรับปรุงโดย ดร.ขวัญศิริ ศิริมังคลา
2 October 2024

บทความ

3 วิธีการเปรียบเทียบข้อมูลกับช่วงก่อนหน้าที่ต้องการด้วย Looker Studio
Looker Studio ถือเป็นอีกเครื่องมือหนึ่งที่เป็นที่นิยมในปัจจุบัน สำหรับการสร้างกราฟหลากหลายรูปแบบเพื่อนำไปใช้วิเคราะห์และเจาะลึกข้อมูลตามความต้องการของผู้ใช้ สิ่งหนึ่งที่จำเป็นต่อการวิเคราะห์ข้อมูลคือความสามารถในการเปรียบเทียบข้อมูลกับช่วงเวลาก่อนหน้าที่ต้องการ เช่น การเปรียบเทียบข้อมูลปีนี้ กับปีที่แล้ว หรือช่วงไตรมาสปัจจุบันมีการเปลี่ยนแปลงจากไตรมาสที่แล้วอย่างไร เป็นต้น ซึ่ง Looker Studio เองมีความสามารถที่จะตอบสนองต่อความต้องการดังกล่าวได้ ในบทความนี้จึงจะนำเสนอ 3 วิธีที่จะช่วยให้การเปรียบเทียบข้อมูลในช่วงเวลาต่าง ๆ สามารถทำได้ด้วย Looker Studio วิธีที่ 1 การใช้ Date Range Control ใน Looker Studio จะมีตัวควบคุม (Control) ให้เลือกใช้อยู่หลากหลายแบบ แต่สิ่งที่จะนำมาใช้ในตอนนี้คือตัวควบคุมที่ชื่อว่า Date Range Control Date Range Control หรือการควบคุมช่วงวันที่ เป็นตัวควบคุมในรูปแบบปฏิทินที่สามารถปรับตั้งค่าได้ตามชอบ ซึ่งช่วยให้การปรับช่วงเวลาที่จะใช้แสดงผลทำได้สะดวกโดยไม่จำเป็นต้องแก้ไขข้อมูลหรือการตั้งค่าใด ๆ เมื่อนำตัวควบคุมดังกล่าววางลงในหน้าที่ต้องการใช้งานแล้ว หน้าการแสดงผลจะถูกควบคุมด้วย Date Range Control ตามการตั้งค่า ซึ่งมีอยู่ 2 แบบ เมื่อสร้าง Date Range Control แล้ว จะต้องเปิดใช้งานตัวเลือกการเปรียบเทียบกับช่วงเวลาก่อนหน้า (Comparison Date Range) โดยที่กราฟเกือบทั้งหมดสามารถแสดงการเปรียบเทียบกับช่วงเวลาก่อนหน้าได้ แต่บางกราฟไม่สามารถทำได้ เช่น กราฟวงกลม แผนที่ เป็นต้น ดังนั้นการพิจารณาก่อนใช้งานกราฟประเภทต่าง ๆ เองก็เป็นสิ่งสำคัญเช่นกัน ในการเปิดใช้งานการเปรียบเทียบช่วงเวลา ในการเปรียบเทียบ ไม่ได้มีการเปรียบเทีบกับช่วงก่อนหน้า (Previous period) เพียงอย่างเดียว วิธีที่ 2 การจัดกลุ่ม (Group) จากวิธีที่ 1 จะเห็นได้ว่า Date range control สามารถทำให้ผู้ใช้สามารถเปรียบเทียบข้อมูลกับช่วงที่ต้องการได้ แต่ว่าการตั้งค่าช่วงเวลาก่อนหน้าจะต้องถูกกำหนดตั้งแต่แรกใน Default date range ของกราฟนั้น ๆ ทำให้ผู้ใช้ที่ไม่ได้มีสิทธิ์ในการแก้ไขกราฟ ไม่สามารถปรับเปลี่ยนช่วงที่ต้องการเทียบได้อย่างอิสระ การจัดกลุ่ม (Group) จะสามารถแก้ไขปัญหาได้โดยมีวิธีการดังนี้ เมื่อลองเปลี่ยนช่วงวันที่ของ Date range control แต่ละตัว จะพบว่ากราฟจะมีการปรับเปลี่ยนตัวเลขตาม Date range control ที่ถูกจัดกลุ่มอยู่ด้วยกัน ไม่มีการยุ่งเกี่ยวกัน (Date range control 1 กับ กราฟ 1) ทำให้สามารถดูค่าตัวเลขเปรียบเทียบระหว่างสองช่วงเวลาได้ วิธีที่ 3 การใช้พารามิเตอร์ อีกหนึ่งวิธีในการเปรียบเทียบข้อมูลกับช่วงก่อนหน้าสามารถทำได้ด้วยพารามิเตอร์ (Parameter) หากย้อนกลับไปที่วิธีที่ 2 จะเห็นได้ว่าถึงแม้จะสามารถเปรียบเทียบค่าได้ แต่ตัวเลขจะอยู่คนละกราฟทำให้การพิจารณาตัวเลขทำได้ไม่สะดวกเท่าที่ควร เมื่อมาถึงขั้นตอนนี้เราจะได้ calculated field จำนวน 2 ตัวคือ present และ compare โดย present นั้นจะเป็นการบวกรวมค่าในคอลัมน์ count หากปีของข้อมูลมีค่าเท่ากับพารามิเตอร์ที่ชื่อปี ขณะที่ compare จะเป็นการบวกรวมค่าในคอลัมน์ count หากปีของข้อมูลมีค่าเท่ากับพารามิเตอร์ที่ชื่อปีที่ต้องการเปรียบเทียบ ทำให้ calculated fields ทั้ง 2 ตัวถูกแยกกันด้วยพารามิเตอร์สองตัวอย่างเด็ดขาด และจะเห็นได้ว่าเมื่อสร้างกราฟตารางขึ้นมา เราสามารถนำ calculated field ทั้ง 2 ตัว ไปใส่เอาไว้ในกราฟเดียวกันได้เลย นอกจากนั้นหากต้องการเปรียบเทียบเพิ่มเติมว่าข้อมูล calculated field ทั้ง 2 ตัว มีการเปลี่ยนแปลงเพิ่มขึ้นหรือลดลงย่างไรก็สามารถทำได้เช่นกัน เมื่อทำเสร็จตามขั้นตอน จะเห็นได้ว่าข้อมูล calculated field ทั้งสอง จะมีคอลัมน์ที่ชื่อ different มาแสดงค่าความเปลี่ยนแปลงว่ามีการเพิ่มขึ้นหรือลดลงอย่างไรเป็นที่เรียบร้อย การใช้งานการเปรียบเทียบข้อมูลใน Looker Studio นั้นจะเห็นได้ว่าสามารถทำได้อย่างหลากหลายวิธี และแต่ละวิธีเองก็มีข้อดี และข้อเสียที่แตกต่างกันไป จึงอยู่ที่ผู้ใช้งานที่จะเลือกใช้วิธีการต่าง ๆ ให้เหมาะสมกับข้อมูลและความต้องการของตนเอง บทความโดย ชนิกานต์ วิทยถาวรวงศ์ ตรวจทานและปรับปรุงโดย นววิทย์ พงศ์อนันต์   แหล่งอ้างอิง
17 September 2024

บทความ

ปฏิวัติวงการ NLP: ทำไมการถ่ายทอดการเรียนรู้ (Transfer learning) จึงเป็นก้าวสำคัญของการประมวลผลภาษา
“การถ่ายทอดการเรียนรู้ (Transfer learning)” หลายคนอาจเคยได้ยินมาบ้างเกี่ยวกับการถ่ายทอดการเรียนรู้ในคอมพิวเตอร์กับงานด้านภาพหรือวิดีโอ แต่รู้หรือไม่ว่า การถ่ายทอดการเรียนรู้ก็สามารถประยุกต์ใช้กับงานด้านภาษาได้เช่นกัน ในช่วงหลายปีที่ผ่านมา มนุษย์มีความสามารถในการคาดการณ์สิ่งต่าง ๆ ได้ดียิ่งขึ้นโดยอาศัยเทคโนโลยีที่เรียกว่า การเรียนรู้ของเครื่อง (Machine learning) หลักการทำงานของเทคโนโลยีดังกล่าวคือการเรียนรู้และทำความเข้าใจข้อมูลที่ได้รับ และสร้างเป็นแบบจำลองที่มีประสิทธิภาพ การเรียนรู้ของแบบจำลองในปัจจุบันส่วนใหญ่เป็นงานเฉพาะด้าน เช่น การเรียนรู้เพื่อสร้างแบบจำลองสำหรับการจัดประเภทรูปภาพ การเรียนรู้เพื่อสร้างแบบจำลองสำหรับการคาดการณ์ล่วงหน้า ซึ่งแบบจำลองที่ถูกสร้างสำหรับงานเฉพาะด้านจะมีประสิทธิภาพที่สูงกับงานนั้น ๆ แต่ในทางกลับกัน แบบจำลองเหล่านั้น อาจเกิดข้อผิดพลาดได้ง่ายกับเงื่อนไข หรือข้อมูลที่ไม่เคยพบมาก่อน ในความเป็นจริง ข้อมูลที่ถูกนำมาให้แบบจำลองเรียนรู้อาจไม่สมบูรณ์ หรือไม่สามารถใช้งานได้ทันทีเหมือนแบบฝึกหัดที่ครูสอนในห้องเรียน ข้อมูลจริงมีโอกาสเกิดทั้ง ความผิดพลาด ความซับซ้อน และมีจำนวนที่น้อย ยกตัวอย่างเช่น ข้อมูลภาพถ่ายความร้อนในห้องน้ำสำหรับแบบจำลองการตรวจจับการล้ม[1] ซึ่งภาพถ่ายความร้อนในห้องน้ำสำหรับการตรวจจับการล้มนั้นเป็นข้อมูลที่เก็บได้ยาก เนื่องจากการล้มในห้องน้ำไม่ได้เกิดขึ้นบ่อย จึงทำให้ข้อมูลที่เก็บได้มีจำนวนน้อย อาจส่งผลให้แบบจำลองที่ถูกเรียนรู้จากข้อมูลดังกล่าวไม่สามารถคาดการณ์สิ่งต่าง ๆ ได้ดีพอ การถ่ายทอดการเรียนรู้จึงถูกนำมาใช้เพื่อแก้ไขปัญหาดังกล่าว โดยมีหลักการทำงานคือ การถ่ายทอดการเรียนรู้จากแบบจำลองหนึ่งไปยังอีกแบบจำลองหนึ่งดังภาพที่ 1 การถ่ายทอดการเรียนรู้ นิยมนำไปประยุกต์ใช้กับงานทางด้าน คอมพิวเตอร์วิทัศน์ (Computer Vision) เช่น การประมวลผลภาพ หรือวิดีโอ เพื่อให้คอมพิวเตอร์สามารถเข้าใจทัศนียภาพ หรือจำแนกวัตถุต่าง ๆ เนื่องจากแบบจำลองสำหรับงานด้านนี้มีพารามิเตอร์เป็นจำนวนมาก ซึ่งจำเป็นต้องใช้ชุดข้อมูลขนาดใหญ่ในการเรียนรู้ของแบบจำลอง โดยอาจใช้เวลาหลายวัน หรือหลายสัปดาห์ในการเรียนรู้ เพื่อให้แบบจำลองสามารถคาดการณ์สิ่งต่าง ๆ ออกมาได้ดียิ่งขึ้น ซึ่งการเรียนรู้แบบจำลองนั้นเป็นความท้าทายอย่างหนึ่งของผู้ที่สนใจในด้านนี้ จึงมีการจัดการแข่งขันที่มากมายในแต่ละปีเพื่อสร้างแบบจำลองที่ดีที่สุด ตัวอย่างเช่น การแข่งขัน ImageNet Large Scale Visual Recognition Challenge (ILSVRC) ที่จัดขึ้นเป็นประจำทุกปี เพื่อเชิญชวนให้นักวิจัยจากทุกมุมโลกมาเข้าร่วม และแข่งกันกันแสดงศักยภาพแบบจำลองของตนเอง ซึ่งทีม Visual Geometry Group (VGG)  ได้รับรางวัลรองชนะเลิศอันดับ 1 ในปี ค.ศ. 2014 และมีชื่อเสียงมากในวงการนี้ แบบจำลองที่น่าสนใจของ VGG มีชื่อว่า VGG-16 ซึ่งมีการใช้ Convolution network เป็นโครงสร้างหลัก  แบบจำลองดังกล่าวสามารถตรวจจับองค์ประกอบของรูปภาพได้ (ขอบ รูปแบบ สไตล์ และอื่นๆ) สถาปัตยกรรมของแบบจำลอง VGG-16 ค่อนข้างซับซ้อน มีเลเยอร์ที่หลากหลายและพารามิเตอร์จำนวนมาก ซึ่งผลลัพธ์ที่ได้แสดงให้เห็นว่า ชั้นประมวลผลที่ซ่อนอยู่ (Hidden layers) ของแบบจำลองสามารถตรวจจับองค์ประกอบในงานแต่ละงานได้ดี แนวคิดการถ่ายทอดการเรียนรู้ กล่าวคือ เลเยอร์ระหว่างกลางภายในแบบจำลองถือเป็นความรู้ทั่วไปที่แบบจำลองได้รับการฝึกอบรม ถ้ามองในมุมของแบบจำลอง VGG-16 ความรู้นั้นคือองค์ประกอบที่เกี่ยวกับภาพ เราสามารถใช้มันเป็นเครื่องมือสร้างแบบจำลองที่มีประสิทธิภาพ ซึ่งสามารถทำได้โดยการนำแบบจำลองที่ผ่านการเรียนรู้แล้ว มาประยุกต์ใช้กับแบบจำลองใหม่ โดยเปลี่ยนเป้าหมายหรือวัตถุประสงค์ของแบบจำลองตามที่ต้องการ ข้อมูลที่นำมาใช้สำหรับการเรียนรู้แบบจำลองใหม่จะมีลักษณะที่แตกต่างออกไปจากแบบจำลองเดิม จึงจำเป็นต้องเรียนรู้ใหม่อีกครั้ง โดยการเรียนรู้ของแบบจำลองครั้งนี้จะใช้ระยะเวลาที่สั้นขึ้น นอกเหนือจากการเรียนรู้แบบจำลองที่เร็วขึ้นแล้ว การถ่ายทอดการเรียนรู้ยังเป็นสิ่งที่น่าสนใจเป็นพิเศษเช่นกัน การถ่ายทอดการเรียนรู้ทำให้ใช้ข้อมูลที่มีการกำกับ (Label) น้อยลง เมื่อเทียบกับชุดข้อมูลขนาดใหญ่ที่ถูกใช้ในการเรียนรู้แบบจำลองตั้งต้น ซึ่งข้อมูลที่มีการกำกับเป็นข้อมูลที่หายากและมีมูลค่าสูง ดังนั้นการถ่ายทอดการเรียนรู้เพื่อสร้างแบบจำลองที่มีคุณภาพโดยไม่ต้องใช้ข้อมูลขนาดใหญ่จึงเป็นที่นิยม การถ่ายทอดการเรียนรู้ในงานด้านภาษา (Transfer Learning in Natural Language Processing, NLP) ความก้าวหน้าในการเรียนรู้เชิงลึกสำหรับ NLP นั้นเติบโตน้อยกว่างานในด้าน Computer vision เนื่องจากคอมพิวเตอร์สามารถเรียนรู้ ขอบภาพ วงกลม สี่เหลี่ยม รูปร่างที่ปรากฏ ว่ามีลักษณะเป็นอย่างไร แล้วนำความรู้นี้ไปทำสิ่งต่าง ๆ แต่ในงานด้านภาษาไม่ได้ตรงไปตรงมาเหมือนงานด้านรูปภาพ ความพยายามแรกเริ่มที่ได้รับความนิยมในการถ่ายทอดการเรียนรู้ของ NLP คือการทำแบบจำลอง word embedding ตัวอย่างเช่น Word2Vec [2] และ Glove [3]  ที่นิยมใช้กันอย่างแพร่หลาย การแปลงคำให้เป็นตัวเลขหรือเวกเตอร์นี้ อาศัยบริบทแวดล้อมของคำนั้นๆ เพื่อสร้างการแทนค่าเชิงตัวเลข โดยคำที่มีความหมายใกล้เคียงกันจะมีค่าเวกเตอร์ที่ใกล้เคียงกันด้วย จากบทความ Word2Vec [2] แสดงให้เห็นว่าแบบจำลองสามารถเรียนรู้ความสัมพันธ์ระหว่างชื่อประเทศกับชื่อเมืองหลวงของประเทศได้อย่างแม่นยำ สิ่งนี้ทำให้ Word2Vec ได้รับการยอมรับอย่างกว้างขวางในวงการ NLP นอกจากนี้ ยังเปิดทางให้มีการพัฒนาวิธีการแทนค่า (representation) ของคำ ตัวอักษร และเอกสารที่มีประสิทธิภาพมากขึ้นต่อไป การถ่ายทอดการเรียนรู้ใน NLP นั้นมีข้อจำกัด คือการจัดการกับภาษาที่ต่างกัน เช่น แบบจำลองที่ได้รับการเรียนรู้ด้วยภาษาอังกฤษ จะไม่สามารถที่จะนำไปใช้กับภาษาอื่น ๆ เนื่องจากรูปแบบไวยากรณ์ของแต่ละภาษามีความแตกต่างกัน เมื่อปี 2018 Howard และ Ruder ได้นำเสนอแบบจำลอง Universal Language Model Fine-tuning (ULMFiT) [4] เพื่อเป็นแนวทางในการถ่ายทอดการเรียนรู้สำหรับ NLP แนวคิดหลักของแบบจำลองนี้มาจากแบบจำลองภาษา ซึ่งเป็นแบบจำลองที่สามารถคาดการณ์คำถัดไปโดยพิจารณาจากคำที่มีอยู่ เปรียบเสมือนการใช้โทรศัพท์มือถือรุ่นใหม่ ๆ ที่มีการคาดการณ์คำถัดไปให้ผู้ใช้งานในขณะที่ผู้ใช้งานกำลังพิมพ์ข้อความ ถ้าผลลัพธ์ที่ได้จาการคาดการณ์คำถัดไปของแบบจำลอง NLP ถูกต้อง นั่นหมายความว่า แบบจำลองได้เรียนรู้ และทำความเข้าใจเกี่ยวกับโครงสร้างภาษาเป็นอย่างดี ดังนั้นความรู้ดังกล่าวจึงเป็นจุดเริ่มต้น ในการเรียนรู้แบบจำลองงานอื่น ๆ ที่กำหนดขึ้นเอง ULMFiT ได้ถูกพัฒนาโดยใช้โครงสร้าง ASGD Weight-Dropped LSTM (AWD-LSTM) [5]  ซึ่งเป็นหนึ่งในแบบจำลองภาษาที่ได้รับความนิยม และถูกใช้อ้างอิงในเอกสารต่าง ๆ อีกมาก อีกทั้งยังเป็น LSTM ที่ดีที่สุดสำหรับการสร้างแบบจำลองภาษาในปัจจุบัน เมื่อแบบจำลองได้เรียนรู้รูปแบบภาษา มันสามารถนำไปประยุกต์ใช้กับงานอื่น ๆ ได้ แต่การนำไปใช้จริงยังคงต้องการปรับแต่งแบบจำลองเพื่อให้เหมาะสมกับงาน โดยเริ่มจากการฝึกอบรมรูปแบบภาษาสำหรับงานที่ใช้ หลังจากนั้นจึงฝึกอบรมสำหรับการทำงานจริง เช่น การฝึกอบรมให้แบบจำลองการจำแนกประเภท จากภาพที่ 4 การทำงานของ ULMFiT แบ่งออกเป็น 3 ขั้นตอนหลัก ได้แก่ LM pre-training คือการฝึกอบรม ULMFiT สำหรับรูปแบบภาษาทั่วไป ผลลัพธ์ที่ได้ คือแบบจำลองได้รับการเรียนรู้คุณสมบัติทั่วไปของภาษานั้น นอกจากนั้น การ pre-training จะมีประสิทธิภาพยิ่งขึ้นโดยเฉพาะข้อมูลที่มีขนาดเล็ก หรือกลาง LM fine-tuning นั้น เป็น การฝึกอบรม ULMFiT สำหรับรูปแบบภาษาเฉพาะ ผลลัพธ์ที่ได้ คือแบบจำลองที่มีรูปแบบที่เหมาะสม เพื่อใช้กับงานที่มีเป้าหมายแบบเฉพาะเจาะจง Classifier Fine-Tuning จะเป็นการฝึกอบรม ULMFiT สำหรับงานนั้น จากการทดสอบประสิทธิภาพในบทความ ULMFiT [4] พบว่าการใช้รูปแบบภาษาที่ได้รับการฝึกอบรมมาก่อน ทำให้การสร้างแบบจำลองจำแนกประเภทใช้ข้อมูลน้อยลง เช่น ผลลัพธ์จากการวิเคราะห์ IMDb ด้วยข้อมูลเพียง 100 ข้อมูล (เส้นสีเขียว) สามารถลดอัตราการผิดพลาดของแบบจำลองได้เทียบเท่ากับแบบจำลองที่ได้รับการฝึกอบรมด้วยข้อมูล 20,000 ข้อมูล (เส้นสีน้ำเงิน) ดังแสดงในรูปภาพที่ 5 และทั้งหมดนี้คือภาพรวมของการถ่ายทอดการเรียนรู้ที่สามารถนำไปใช้ในด้านการประมวลผลภาษา ความก้าวหน้าที่ได้รับจาก ULMFiT ได้ส่งเสริมการวิจัยในการถ่ายทอดการเรียนรู้สำหรับ...
8 August 2024

บทความ

สร้างสีสันให้ Dashboard ด้วย Dynamic Icons ใน Power BI: เทคนิคง่าย ๆ ที่ทำให้ข้อมูลของคุณมีชีวิต
คุณเคยรู้สึกว่าการนำเสนอข้อมูลของคุณยังขาดความน่าสนใจหรือไม่ ลองนึกภาพดูว่าถ้าคุณสามารถเพิ่มชีวิตชีวาให้กับตัวเลขและกราฟของคุณด้วยไอคอนที่เปลี่ยนแปลงอย่างมีชีวิตชีวาตามข้อมูลจริง จะเป็นอย่างไร วันนี้เราจะมาเรียนรู้วิธีสร้าง Dynamic Icons ใน Power BI – เทคนิคที่จะทำให้ Dashboard ของคุณโดดเด่น สื่อสารข้อมูลได้อย่างมีประสิทธิภาพ และสร้างความประทับใจให้กับผู้ชมของคุณ บทความนี้จะอธิบายถึงการสร้างไอคอนที่มีการเปลี่ยนแปลงไปตามข้อมูลหรือ Dynamic icons ที่ใช้งานในโปรแกรม Power BI ตัวอย่างดังรูปที่ 1 เมื่อค่าผลรวมกำไรมีค่ามากกว่า 0 จะแสดงสัญลักษณ์ลูกศรชี้ขึ้นสีเขียว  แต่หากค่าผลรวมกำไรมีค่าน้อยกว่า 0 จะแสดงสัญลักษณ์ลูกศรชี้ลงสีแดง           การนำเสนอดังกล่าวแสดงผลผ่าน Card (new) โดยทำการเพิ่มรูปภาพร่วมกับการแสดงผลของค่า ซึ่งการแสดงของไอคอนนั้นจะต้องสร้างสูตร (Measure) เพื่อระบุเงื่อนไขในการแสดงผล โครงสร้างสูตรเบื้องต้นมีส่วนประกอบดังรูปที่ 2 ภายใน “” จะต้องนำโค้ดของการแปลงไอคอนให้อยู่ในรูป image base64 เรียบร้อยแล้ว           ก่อนอื่น เราสามารถค้นหาไอคอนที่ต้องการนำมาใช้งานได้จาก Flaticon ที่มีไอคอนฟรีมากมายให้เลือกใช้ โดยเลือกตัวเลือกการดาวน์โหลดเป็นไฟล์ PNG ขนาด 32px           จากนั้นนำภาพที่ได้ไปอัปโหลดและแปลงเป็นไฟล์ภาพ Base64 ที่ https://www.base64-image.de/           ให้ทำการกดปุ่ม copy image เพื่อนำโค้ดที่ได้ไปวางในสูตรที่เตรียมไว้ จะได้ผลลัพธ์ดังรูปที่ 5 สุดท้ายให้เปลี่ยน Data category ของสูตรเป็น Image URL ดังรูปที่ 6           สร้าง Card (new) โดยเลือกข้อมูลที่ต้องการแสดงผลมาใส่ ที่ Format visual ในเมนู Image เลือก Image type: Image URL ดังรูปที่ 7 จากนั้นคลิกที่ปุ่ม Conditional formatting จะปรากฏหน้าต่างดังรูปที่ 8 เลือกสูตรที่สร้างไว้มาใส่ กดปุ่ม OK           จะได้ผลลัพธ์เป็นค่าพร้อมด้วยไอคอนที่ปรับเปลี่ยนตามสูตรที่ต้องการแล้ว นอกจากนี้การแสดงผลสามารถเลือกเฉพาะ Dynamic icons โดยปิดการแสดงผล Values           การแสดงผลสภาพอากาศมักถูกแสดงด้วยไอคอนที่เกี่ยวกับเมฆและฝน ดังแสดงในรูปที่ 8 จะเป็นการแสดงผลสภาพอากาศ 7 วันด้วยการใช้ Dynamic icons ในกรณีที่มีการวิเคราะห์สถานการณ์เสี่ยงน้ำแล้งและน้ำท่วมสามารถแสดงผลความรุนแรงของความเสี่ยงด้วยสี อาจจะใช้เพียงจุดสีธรรมดาในการแสดงผล Dynamic Icons เป็นเครื่องมือที่มีประโยชน์สำหรับการสร้าง Visuals ที่น่าสนใจและเข้าใจง่ายใน Power BI ช่วยให้นักวิเคราะห์สื่อสารข้อมูลเชิงลึกแบบเรียลไทม์ เรายังมีเทคนิคอีกมากมายที่จะช่วยยกระดับการนำเสนอข้อมูลของคุณใน Power BI ให้น่าสนใจยิ่งขึ้น อย่าลืมติดตามบทความอื่น ๆ ของเราเพื่อเรียนรู้เทคนิคและเคล็ดลับใหม่ ๆ ที่จะช่วยให้คุณกลายเป็นผู้เชี่ยวชาญด้านการวิเคราะห์และนำเสนอข้อมูล เราพร้อมที่จะแบ่งปันความรู้และไอเดียสร้างสรรค์ใหม่ ๆ อยู่เสมอ มาร่วมเป็นส่วนหนึ่งในการพัฒนาทักษะการใช้ Power BI ไปด้วยกันนะคะ บทความโดย ขวัญศิริ ศิริมังคลาตรวจทานและปรับปรุงโดย นววิทย์ พงศ์อนันต์ อ้างอิง
30 July 2024
PDPA Icon

We use cookies to optimize your browsing experience and improve our website’s performance. Learn more at our Privacy Policy and adjust your cookie settings at Settings

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as needed, except for necessary cookies.

Accept all
Manage Consent Preferences
  • Strictly Necessary Cookies
    Always Active

    This type of cookie is essential for providing services on the website of the Personal Data Protection Committee Office, allowing you to access various parts of the site. It also helps remember information you have previously provided through the website. Disabling this type of cookie will result in your inability to use key services of the Personal Data Protection Committee Office that require cookies to function.
    Cookies Details

  • Performance Cookies

    This type of cookie helps the Big Data Institute (Public Organization) understand user interactions with its website services, including which pages or areas of the site are most popular, as well as analyze other related data. The Big Data Institute (Public Organization) also uses this information to improve website performance and gain a better understanding of user behavior. Although the data collected by these cookies is non-identifiable and used solely for statistical analysis, disabling them will prevent the Big Data Institute (Public Organization) from knowing the number of website visitors and from evaluating the quality of its services.

  • Functional Cookies

    This type of cookie enables the Big Data Institute (Public Organization)’s website to remember the choices you have made and deliver enhanced features and content tailored to your usage. For example, it can remember your username or changes you have made to font sizes or other customizable settings on the page. Disabling these cookies may result in the website not functioning properly.

  • Targeting Cookies

    "This type of cookie helps the Big Data Institute (Public Organization) understand user interactions with its website services, including which pages or areas of the site are most popular, as well as analyze other related data. The Big Data Institute (Public Organization) also uses this information to improve website performance and gain a better understanding of user behavior. Although the data collected by these cookies is non-identifiable and used solely for statistical analysis, disabling them will prevent the Big Data Institute (Public Organization) from knowing the number of website visitors and from evaluating the quality of its services.

Save settings
This site is registered on wpml.org as a development site. Switch to a production site key to remove this banner.