Graph

Graph

ข่าวและบทความที่เกี่ยวข้อง

Related news and articles

PostType Filter En

บทความ

การออกแบบ Data Visualization ให้ Accessible
การทำให้ Data Visualization นั้น Accessible ช่วยให้ผู้รับสารทุกคนสามารถเข้าถึงสิ่งที่เราต้องการจะนำเสนอโดยไม่พลาดอะไรไปเพราะข้อจำกัดต่าง ๆ
22 June 2022

บทความ

เลือกแผนภาพอย่างไรสำหรับการทำ Data Visualization
หากเรามีข้อมูลมากมายไปหมด ก็คงจะเป็นเรื่องที่ยากลำบากในการหา Insight จากข้อมูล รวมถึงการใช้ข้อมูลเพื่ออธิบายให้ผู้อื่นเข้าใจสิ่งที่เราต้องการจะสื่อสาร วิธีการที่ง่ายที่สุดก็คือการทำ Data Visualization – สร้างกราฟหรือแผนภาพจากข้อมูล แต่หลาย ๆ คน อาจจะสงสัยว่าจะเลือกกราฟหรือแผนภาพอย่างไร ให้เหมาะสมกับข้อมูลที่มีและตอบโจทย์ที่เราต้องการ เลือกอย่างไร?             แผนภาพแต่ละประเภทนั้นมีวิธีการใช้ที่แตกต่างกัน เราจึงต้องตอบคำถามเหล่านี้ก่อน 1. Visualization นี้ตอบคำถามอะไร           การทำ Data Visualization ก็เปรียบเสมือนการเล่าเรื่อง (Story Telling) จากข้อมูลที่มีอยู่เพื่อตอบคำถามที่ผู้ชมอาจจะมี แน่นอนว่าถ้าเรื่องราว (Story) หรือ คำถามที่จะตอบแตกต่างกัน ก็จะต้องใช้แผนภาพคนละแบบในการอธิบาย ยกตัวอย่างเช่น หากเราต้องการตอบคำถามว่าผลิตภัณฑ์ประเภทใดที่ขายดีที่สุด ก็ควรจะใช้กราฟที่แสดงยอดขายที่แตกต่างกันของแต่ละประเภทให้เห็นชัดเจน แต่หากเราต้องการทราบว่าเวลาที่ใช้ในการจัดส่งสินค้าเป็นอย่างไร อาจจะต้องแสดงให้เห็นถึงการกระจายตัวของข้อมูลเวลาที่ใช้ในการจัดส่ง 2. ผู้ชม (Audience) เป็นคนประเภทไหน การทำ Data Visualization ให้ผู้ชมที่เป็นกลุ่มผู้บริหารควรมีรูปแบบที่ต่างออกไปจาก Visualization ที่ทำสำหรับผู้ชมกลุ่มผู้ปฏิบัติการ เนื่องด้วยความสนใจที่แตกต่างกันระหว่างคนสองกลุ่ม นอกจากนี้ระดับความเข้าใจของผู้ชมเป้าหมายก็ส่งถึงตัวเลือกรูปแบบในการนำเสนอข้อมูล ตัวอย่างเช่น กราฟที่ดูง่าย ๆ และกระชับ เช่น แผนภูมิวงกลม (Pie Chart) อาจจะเหมาะสมกว่าการทำแผนที่ต้นไม้ (Treemap) ที่ต้องใช้เวลาดูและคิดมากกว่า ข้อมูลอาจจะละเอียดมากเกินไปเหมาะสำหรับผู้บริหาร เป็นต้น 3. ข้อมูลมีจำนวนมากขนาดไหน           จำนวนของข้อมูลก็ส่งผลต่อแผนภาพที่เราจะสร้าง ตัวอย่างเช่น ถ้าทำแผนภาพการกระจาย (Scatter plot) ที่บอกถึงความสัมพันธ์ระหว่างยอดขายและราคา หากสินค้าซึ่งแทนด้วยจุดแต่ละจุดบนแผนภาพมีจำนวนมากก็จะทำให้แผนภาพนั้นดูเข้าใจได้ยาก (ซ้าย) ตัวอย่างเช่นนี้อาจจะต้องอาศัยการรวบแถวข้อมูล (Aggregate) ก่อนเพื่อจัดกลุ่มเป็นหมวดหมู่ (ขวา) เป็นต้น 4. ข้อมูลเป็นประเภทอะไร           โดยทั่วไปแล้วข้อมูลอาจแบ่งออกเป็นสองประเภท คือ ข้อมูลประเภทหมวดหมู่ (Categorical) และข้อมูลประเภทตัวเลข (Numerical) การสร้างแผนภาพสำหรับข้อมูลต่างประเภทก็จะมีความแตกต่างกัน ตัวอย่างเช่น หากต้องการเปรียบเทียบจำนวนสินค้าในประเภทผลิตภัณฑ์แตกต่างกันก็จะใช้กราฟแท่ง แต่ถ้าเปรียบเทียบจำนวนสินค้ากับผลิตภัณฑ์ราคาต่าง ๆ กัน ก็อาจจะใช้ ฮิสโตแกรม (Histogram) เพราะว่า ประเภทผลิตภัณฑ์กับราคาสินค้าเป็นข้อมูลคนละประเภทกัน 5 องค์ประกอบของแผนภาพที่ใช้สื่อถึงอะไร           หลักการของการทำแผนภาพ คือให้องค์ประกอบ (Element) แทนที่ตัวเลขหรือข้อมูลของเรา ตัวอย่างเช่น ในกราฟวงกลมเราให้ สีแสดงถึงหมวดหมู่ และมุมหรือพื้นที่ของพาย แสดงถึงจำนวนในหมวดหมู่นั้น ๆ แต่ละองค์ประกอบควรจะสื่อถึงปริมาณเพียงอย่างเดียว เพื่อให้สื่อสารได้อย่างแม่นยำ ทีนี้มาดูตัวอย่างแผนภาพต่าง ๆ ที่ใช้ตอบคำถามหลากหลายรูปแบบ 1. ต้องการแสดงถึงขนาดที่ต่างกัน หรือ จัดลำดับ โดยทั้งสองแบบอาจจะใช้สีในกรณีที่ต้องการแบ่งหมวดหมู่ ขนาดที่แตกต่างกันจะทำให้เห็นได้ชัดเจนว่าปริมาณในข้อมูลกลุ่มไหนมีขนาดใหญ่ที่สุด 2. ต้องการเห็นความสัมพันธ์ หากต้องการหาความสัมพันธ์ระหว่างสองตัวแปร เช่น ราคา กับ กำไร สัมพันธ์กันอย่างไร 3. ต้องการเห็นการกระจายตัว 4. ต้องการเห็นการเปลี่ยนแปลงตามช่วงเวลา 5. ต้องการเห็นข้อมูลที่เบี่ยงเบนจากปกติ หากต้องการเน้นว่าตัวเลขนั้นเบี่ยงเบนจากค่าอ้างอิง เช่น เป้าหมายหรือค่าเฉลี่ยมากน้อยแต่ไหน มีค่าบวกหรือลบมากน้อยเพียงใด เราสามารถใช้สีในการช่วยสื่อถึงว่าตัวเลขมีค่าสูงหรือต่ำกว่าเป้าหมายที่ต้องการแสดงเพียงใด 6. ต้องการแสดงถึงองค์ประกอบ 7. ต้องการแสดงถึงข้อมูลเชิงพื้นที่ แหล่งที่มา https://www.tableau.com/solutions/gallery/visual-vocabulary
19 March 2021

บทความ

การแสดงกราฟด้วยภาษา DOT
บทความนี้จะกล่าวถึงการแสดงกราฟด้วยภาษา DOT โดยพูดถึงหลักภาษา และตัวอย่างการเขียนและผลลัพธ์จริง
29 January 2021
PDPA Icon

We use cookies to optimize your browsing experience and improve our website’s performance. Learn more at our Privacy Policy and adjust your cookie settings at Settings

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as needed, except for necessary cookies.

Accept all
Manage Consent Preferences
  • Strictly Necessary Cookies
    Always Active

    This type of cookie is essential for providing services on the website of the Personal Data Protection Committee Office, allowing you to access various parts of the site. It also helps remember information you have previously provided through the website. Disabling this type of cookie will result in your inability to use key services of the Personal Data Protection Committee Office that require cookies to function.
    Cookies Details

  • Performance Cookies

    This type of cookie helps the Big Data Institute (Public Organization) understand user interactions with its website services, including which pages or areas of the site are most popular, as well as analyze other related data. The Big Data Institute (Public Organization) also uses this information to improve website performance and gain a better understanding of user behavior. Although the data collected by these cookies is non-identifiable and used solely for statistical analysis, disabling them will prevent the Big Data Institute (Public Organization) from knowing the number of website visitors and from evaluating the quality of its services.

  • Functional Cookies

    This type of cookie enables the Big Data Institute (Public Organization)’s website to remember the choices you have made and deliver enhanced features and content tailored to your usage. For example, it can remember your username or changes you have made to font sizes or other customizable settings on the page. Disabling these cookies may result in the website not functioning properly.

  • Targeting Cookies

    "This type of cookie helps the Big Data Institute (Public Organization) understand user interactions with its website services, including which pages or areas of the site are most popular, as well as analyze other related data. The Big Data Institute (Public Organization) also uses this information to improve website performance and gain a better understanding of user behavior. Although the data collected by these cookies is non-identifiable and used solely for statistical analysis, disabling them will prevent the Big Data Institute (Public Organization) from knowing the number of website visitors and from evaluating the quality of its services.

Save settings