Khwansiri Sirimangkhala

Khwansiri Sirimangkhala

Senior Data Management Training and Development Specialist at Big Data Institute (Public Organization), BDI

บทความของผู้เขียน

Articles

Author Category Post Filter
AI Governance: เข็มทิศนำทางสู่ปัญญาประดิษฐ์ที่น่าเชื่อถือ
ในยุคที่ปัญญาประดิษฐ์ (AI) เข้ามามีบทบาทสำคัญต่อการดำเนินธุรกิจและการใช้ชีวิตประจำวัน เราจำเป็นต้องเข้าใจว่า AI ไม่ใช่แค่เครื่องมือธรรมดา แต่เป็นเทคโนโลยีที่สามารถใช้งานได้หลากหลาย ส่งผลให้ผู้ใช้มีอิทธิพลต่อผลลัพธ์ที่เกิดขึ้น เปรียบเสมือนกับค้อนที่สามารถใช้ตอกตะปูหรือทำกิจกรรมอื่น ๆ ได้ จึงควรเตรียมความพร้อมและสร้างความเข้าใจให้กับบุคลากรและผู้มีส่วนได้ส่วนเสีย เพื่อป้องกันความเสี่ยงไม่ว่าจะเป็น ความเสี่ยงที่เกิดจากการกระทำโดยเจตนา (Intentional) เช่น Deepfake Scam หรือ Autonomous Weapons และความเสี่ยงที่ไม่ได้เกิดจากความตั้งใจ (Unintentional) เช่น ความผิดพลาดโดยไม่เจตนา หรือภัยธรรมชาติ ซึ่งเป็นปัญหาหลักที่องค์กรควรให้ความสำคัญ โดยรวมถึงข้อมูลที่ AI ใช้ในการเรียนรู้เกิดความลำเอียง (Bias Training Data) AI สร้างข้อมูลหรือเนื้อหาที่ไม่ถูกต้อง ไม่เป็นความจริง หรือไม่สมเหตุสมผล (Hallucination) คำแนะนำหรือการตัดสินใจที่ผิดพลาด ปัญหาลิขสิทธิ์ เป็นต้น โดยเฉพาะอย่างยิ่ง หากท่านผู้อ่านเป็นผู้บริหารแล้ว ควรทำความเข้าใจและจัดการความเสี่ยงจาก AI อย่างรอบด้านผ่านคำถาม ดังนี้ หลักการกำกับดูแล AI (AI Principles) แนวทางในการพัฒนา ใช้งาน และกำกับดูแลเทคโนโลยี AI คำนึงถึงผลกระทบทางจริยธรรม สังคม และกฎหมาย โดยเน้นให้ AI สร้างประโยชน์ต่อมนุษย์และสังคม พร้อมลดความเสี่ยงและผลกระทบเชิงลบที่อาจเกิดขึ้น  ได้แก่ ภาพรวม AI Governance ในระดับสากลและไทย ในระดับสากล โดยเฉพาะสหประชาชาติ (UN) ให้ความสำคัญกับการกำกับดูแล AIโดยเน้นไปที่ สิทธิมนุษยชน จริยธรรม และความยุติธรรม เป็นหลัก ต่างจากสหรัฐอเมริกา ที่ขับเคลื่อนด้วยกลไกตลาด เน้นการแข่งขัน ประสิทธิภาพ และนวัตกรรมมากกว่า จีนเน้นการลงทุนโครงสร้างพื้นฐาน และการควบคุมโดยรัฐ และสหภาพยุโรปเน้นการกำกับดูแลเพื่อปกป้องสิทธิเสรีภาพของประชาชน สำหรับประเทศไทย คาดว่าจะไม่มีการออกกฎหมาย AI ในเร็วๆ นี้ และแนวโน้ม คือการพัฒนามาตรฐานอุตสาหกรรมโดยหลายภาคส่วนร่วมกัน ไม่ใช่แค่รัฐบาลเดียว องค์กรจึงควรแสดงให้เห็นว่าการใช้ AI สอดคล้องกับนโยบายเพื่อหลีกเลี่ยงการถูกมองว่าไม่รับผิดชอบต่อสังคมหรือที่เรียกว่า Social License to Operate และเพื่อประเมินความเสี่ยงของผลิตภัณฑ์ โดยเทียบกับ EU AI Act ที่แบ่งความเสี่ยงเป็น 4 ระดับตามแนวทาง Risk-Based Approach ได้แก่ โดยสิ่งที่สำคัญคือจะต้องใช้แนวทางในการ “อิงตามความเสี่ยง (Risk-Based)” เพื่อให้เข้าใจประเภทของความเสี่ยง (กฎหมาย จริยธรรม การดำเนินงาน) และใช้แนวทาง Integration-Based เพื่อบูรณาการและพิจารณาร่วมกันจากหลาย ๆ ฝ่ายโดยใช้เครื่องมือและกลไกที่หลากหลาย บทสรุป การกำกับดูแล AI ถูกให้ความสำคัญทั้งในระดับสากลและในประเทศไทย โดยมีเป้าหมายเพื่อคุ้มครองสิทธิส่วนบุคคลและสร้างความยุติธรรมในการใช้งาน เทรนด์ทั่วโลกสะท้อนให้เห็นหลายแนวทาง ไม่ว่าจะเป็นการเน้นจริยธรรมและสิทธิมนุษยชนของสหประชาชาติ การขับเคลื่อนด้วยนวัตกรรมในสหรัฐอเมริกา หรือการควบคุมโดยรัฐในจีน ขณะที่สหภาพยุโรปออกกฎหมายเพื่อคุ้มครองเสรีภาพประชาชน สำหรับไทย แม้ยังไม่มีการออกกฎหมาย AI โดยตรง แต่มีแนวโน้มเน้นการพัฒนามาตรฐานร่วมกันจากหลายภาคส่วน องค์กรจึงควรดำเนินงานอย่างโปร่งใสและมีความรับผิดชอบต่อสังคม ควรประเมินความเสี่ยงของ AI ด้วยแนวทางอิงตามความเสี่ยง เพื่อให้มั่นใจว่าสอดคล้องกับมาตรฐานและไม่เกิดผลกระทบเชิงลบ โดยเฉพาะกับระบบที่มีความเสี่ยงสูง ทั้งนี้ การบูรณาการความร่วมมือกับหลายฝ่ายและเลือกใช้เครื่องมือที่เหมาะสมจะช่วยสร้างความเชื่อมั่นในการนำ AI ไปใช้ในสังคมได้อย่างยั่งยืน เอกสารอ้างอิง https://arxiv.org/pdf/2407.01294 https://www.aiaaic.org/aiaaic-repository https://www.theguardian.com/society/article/2024/jun/23/dwp-algorithm-wrongly-flags-200000-people-possible-fraud-error https://doi.org/10.1007/s13347-021-00474-3 https://s41721.pcdn.co/wp-content/uploads/2021/06/Executive-Summary-2022-Report.pdf https://aiindex.stanford.edu/wp-content/uploads/2023/04/HAI_AI-Index-Report_2023.pdf
7 July 2025
รู้จักกับ Thai AI Service Platform ปัญญาประดิษฐ์สัญชาติไทย
ในปัจจุบันเทคโนโลยีปัญญาประดิษฐ์ หรือ AI เข้ามามีบทบาทสำคัญในการพลิกโฉมธุรกิจในหลากหลายด้าน ด้วยความสามารถที่พัฒนาขึ้นอย่างต่อเนื่อง ทำให้ AI กลายเป็นเครื่องมือสำคัญในยุคดิจิทัลที่ทั่วโลกไม่อาจปฎิเสธได้ หน่วยงานภาครัฐของไทยได้ตระหนักถึงความสำคัญนี้ จึงริเริ่มพัฒนา แพลตฟอร์ม Thai AI เพื่อสร้างเครื่องมือที่ตอบโจทย์สำหรับการเปลี่ยนแปลงอย่างรวดเร็วของเทคโนโลยีด้านปัญญาประดิษฐ์ ที่จะช่วยเสริมสร้างความแกร่งให้กับภาคธุรกิจ พร้อมทั้งยกระดับความสามารถทางเทคโนโลยีของประเทศไทยให้ทัดเทียมกับนานาประเทศ ที่มาของ Thai AI  Thai AI Service Platform หรือที่รู้จักในชื่อ Thai AI และ AI for Thai เป็นแพลตฟอร์มปัญญาประดิษฐ์สัญชาติไทยที่พัฒนาขึ้นโดยกลุ่มวิจัยปัญญาประดิษฐ์ (AINRU) ศูนย์เทคโนโลยีอิเล็กทรอนิกส์และคอมพิวเตอร์แห่งชาติ (NECTEC) เพื่อสนับสนุนการใช้งาน AI ในประเทศไทย โดยมีวัตถุประสงค์เพื่อให้ผู้ใช้งาน 3 กลุ่มหลักมีแพลตฟอร์ม AI ที่รองรับการใช้งานด้วยภาษาไทย ได้แก่ นักพัฒนาระบบ ผู้ประกอบการ SME และ Start Up รวมถึงบริษัทเอกชนต่าง ๆ โดย Thai AI ได้รับการพัฒนาขึ้นให้มีความสามารถด้วยกัน 3 ด้านหลัก ๆ ดังนี้ เนื่องจาก Thai AI ถูกออกแบบมาเพื่อตอบโจทย์การใช้งานของคนไทยโดยเฉพาะ จึงมีความสามารถที่โดดเด่น 3 ประการ ได้แก่ นอกจากนี้แพลตฟอร์มนี้ยังเปิดโอกาสให้นักพัฒนาและนักวิจัยสามารถนำ API ไปต่อยอดเพื่อสร้างแอปพลิเคชันที่เป็นประโยชน์ต่อธุรกิจและสังคม ซึ่งสามารถเข้าไปดูรายละเอียดเกี่ยวกับข้อมูลและวิธีการใช้งานได้ที่ AI FOR THAI – Thai AI Service Platform Thai AI คือปัญญาประดิษฐ์สัญชาติไทยที่มาพร้อมความสามารถรอบด้าน ทั้งการประมวลผลข้อความ รูปภาพ และเสียง ซึ่งการพัฒนา Thai AI นับเป็นก้าวสำคัญที่สะท้อนให้เห็นถึงความมุ่งมั่นของภาครัฐในการปรับตัวให้ทันกับการเปลี่ยนแปลงของเทคโนโลยี ทั้งยังเป็นการเปิดโอกาสให้คนไทยได้เรียนรู้และนำ AI ไปต่อยอดสร้างสรรค์นวัตกรรมใหม่ ๆ ในหลากหลายด้าน ไม่ว่าจะเป็นธุรกิจ การศึกษา หรือการพัฒนาอุตสาหกรรมดิจิทัล ซึ่งจะ เป็นการผลักดันประเทศไทยให้ก้าวไปสู่อนาคตที่ขับเคลื่อนด้วย AI อย่างยั่งยืนและเต็มศักยภาพในเวลาอันใกล้! แหล่งอ้างอิง
2 July 2025
คนจนแต่ละพื้นที่ต้องการความช่วยเหลืออย่างไร? หา insight จากข้อมูลด้วยเทคนิค Data Science 
ปัญหาความยากจนเป็นปัญหาสำคัญที่ส่งผลกระทบต่อการพัฒนาทางเศรษฐกิจและสังคมของประเทศไทยมาอย่างต่อเนื่อง แม้ในช่วงหลายทศวรรษที่ผ่านมา ประเทศไทยจะมีการเติบโตทางเศรษฐกิจและความพยายามของภาครัฐในการยกระดับคุณภาพชีวิตของประชาชน แต่ยังคงมีประชาชนจำนวนไม่น้อยที่ยังประสบปัญหาด้านรายได้ ความไม่เท่าเทียมในการเข้าถึงทรัพยากรและบริการพื้นฐาน ซึ่งสะท้อนให้เห็นถึงความเหลื่อมล้ำที่ยังฝังรากลึกในโครงสร้างสังคมไทย  การแก้ปัญหาความยากจนและยกระดับคุณภาพชีวิตประชาชนด้วยระบบ TPMAP   ระบบบริหารจัดการข้อมูลการพัฒนาคนแบบชี้เป้า (TPMAP: Thai People Map and Analytics Platform) พัฒนาขึ้นโดยสำนักงานสภาพัฒนาการเศรษฐกิจและสังคมแห่งชาติ หรือ สภาพัฒน์ (สศช.) และศูนย์เทคโนโลยีอิเล็กทรอนิกส์และคอมพิวเตอร์แห่งชาติ (NECTEC) เพื่อเป็นกรณีตัวอย่างของการพัฒนาระบบ Big Data ของภาครัฐ ตามมติของคณะกรรมการบริหารราชการแผ่นดินเชิงยุทธศาสตร์ ในเวลาต่อมาได้นำระบบดังกล่าวมาใช้ในการบริหารราชการแผ่นดินเพื่อยกระดับคุณภาพชีวิตของประชาชน ทั้งในด้านการเพิ่มรายได้ ลดภาระค่าครองชีพ และเพิ่มโอกาสด้านอาชีพ  Thai People Map and Analytics Platform – TPM★P  ระบบ TPMAP สามารถเข้าถึงผ่านเว็บไซต์ https://www.tpmap.in.th/ แสดงข้อมูล “คนจนเป้าหมาย” จากกลุ่มคนที่ได้รับการสำรวจความจำเป็นพื้นฐาน (จปฐ.) จากกรมการพัฒนาชุมชน กระทรวงมหาดไทย ที่ถูกนำมาวิเคราะห์ด้วยดัชนีความยากจนหลายมิติว่ายากจน และข้อมูลผู้ลงทะเบียนสวัสดิการแห่งรัฐ กระทรวงการคลัง ในระยะแรกกลุ่มคนจนเป้าหมายของ TPMAP คือกลุ่มคนที่ได้รับการสำรวจ จปฐ. ว่ายากจน (survey-based) และเป็นผู้ที่มาลงทะเบียนเพื่อรับบัตรสวัสดิการแห่งรัฐ (registered based) ซึ่งต่อมาได้ขยายกลุ่มคนจนเป้าหมายเป็นทั้งกลุ่มที่ลงทะเบียนและไม่ได้ลงทะเบียนบัตรสวัสดิการฯ  แบบสำรวจ จปฐ. และดัชนีความยากจนหลายมิติ วัดความยากจนอย่างไร  การสำรวจข้อมูลความจำเป็นพื้นฐาน (จปฐ.) คือ ข้อมูลในระดับครัวเรือนที่แสดงถึงสภาพความจำเป็นพื้นฐานของคนในครัวเรือนในด้านต่าง ๆ เกี่ยวกับคุณภาพชีวิตที่ได้กำหนดมาตรฐานขั้นต่ำเอาไว้ว่า คนควรจะมีคุณภาพชีวิตในแต่ละเรื่องอย่างไรในช่วงระยะเวลาหนึ่ง ๆ มีการปรับปรุงแบบสอบถามทุก ๆ 5 ปี ดำเนินการโดยกรมการพัฒนาชุมชน กระทรวงมหาดไทย เพื่อประเมินคุณภาพชีวิตของประชาชนในระดับครัวเรือน โดยมุ่งเน้นการเก็บข้อมูลในพื้นที่ชนบทและชุมชนท้องถิ่นเป็นหลัก นั่นคือ เขตชนบทและชุมชนท้องถิ่น พื้นที่ที่อยู่ภายใต้การดูแลขององค์กรปกครองส่วนท้องถิ่น เช่น องค์การบริหารส่วนตำบล (อบต.) และเทศบาลตำบลที่ยกฐานะจาก อบต. แบบสำรวจ  ดัชนีความยากจนหลายมิติ (Multidimensional Poverty Index: MPI) พัฒนาโดย Oxford Poverty & Human Development Initiative และ United Nation Development Programme ซึ่ง สภาพัฒน์ได้นำมาปรับใช้กับประเทศไทย โดยอาศัยหลักการที่ว่า คนจนคือผู้ที่มีคุณภาพชีวิตต่ำกว่าเกณฑ์คุณภาพชีวิตที่ดีในมิติต่าง ๆ ซึ่ง TPMAP พิจารณาจาก 5 มิติ ได้แก่ ด้านสุขภาพ ด้านการศึกษา ด้านการเงิน ด้านความเป็นอยู่ และด้านการเข้าถึงบริการรัฐ ดังนั้น ครัวเรือนที่จน คือ ครัวเรือนที่ได้รับการสำรวจว่าจนจาก ข้อมูลความจำเป็นพื้นฐาน (จปฐ.) นั่นคือ ตกดัชนีความยากจนหลายมิติ (MPI) อย่างน้อย 1 มิติ ซึ่งหมายถึงครัวเรือนตกเกณฑ์ตัวชี้วัดที่อยู่ในมิตินั้น อย่างน้อย 1 ตัวชี้วัด และคนจนเป้าหมาย คือ คนที่อาศัยอยู่ในครัวเรือนที่ได้รับการสำรวจว่าจน  ภาพรวมข้อมูลบนระบบ TPMAP  จากข้อมูลการสำรวจความจำเป็นพื้นฐาน (จปฐ.) ซึ่งครอบคลุมประชากรราว 35 ล้านคนต่อปี พบว่า สัดส่วนของคนจนเป้าหมาย มีแนวโน้มลดลงในช่วงปี 2560–2562 โดยลดจาก  อย่างไรก็ตาม เนื่องจากไม่มีข้อมูลในช่วงปี 2563–2564 จึงไม่สามารถติดตามแนวโน้มในช่วงเวลาดังกล่าวได้โดยตรง กระทั่งปี 2565 พบว่า สัดส่วนคนจนเป้าหมายเพิ่มขึ้นเป็น 9.52% (ประมาณ 3,438,515 คน) ซึ่งอาจเป็นผลกระทบจากสถานการณ์การแพร่ระบาดของโควิด-19 ต่อมาในปี 2566 ตัวเลขนี้ลดลงอย่างชัดเจนเหลือเพียง 1.81% (ประมาณ 655,365 คน) แต่ในปี 2567 สัดส่วนของคนจนเป้าหมายกลับเพิ่มขึ้นอีกครั้งเป็น 7.39% (ประมาณ 2,568,168 คน) อันเป็นผลจากการ ปรับนิยาม และการ เพิ่มตัวชี้วัด ที่ใช้วิเคราะห์คนจนเป้าหมายในมิติต่าง ๆ  ข้อมูลเหล่านี้ชี้ให้เห็นถึงความจำเป็นในการออกแบบมาตรการลดความเหลื่อมล้ำอย่างจำเพาะ โดยคำนึงถึงทั้ง มิติปัญหา และ บริบทพื้นที่ เพื่อให้ความช่วยเหลือสามารถเข้าถึงผู้ที่มีความต้องการได้อย่างตรงจุดและมีประสิทธิภาพมากที่สุด  ปัจจัยที่มักจะขาดแคลนร่วมกันคืออะไรบ้าง?   หาความสัมพันธ์ของตัวชี้วัดด้วย Pearson’s correlation  ความยากจนไม่ใช่เพียงการขาดรายได้ แต่เป็นชุดของปัจจัยที่ขาดแคลนร่วมกัน ในการทำความเข้าใจปัญหาความยากจนอย่างรอบด้าน จำเป็นต้องวิเคราะห์ความเชื่อมโยงระหว่างตัวชี้วัดด้านเศรษฐกิจ สังคม สุขภาพ และการศึกษา การนำ Pearson’s correlation coefficient มาใช้ช่วยให้เห็นความสัมพันธ์ระหว่างตัวแปรต่าง ๆ อย่างชัดเจน และสามารถระบุได้ว่าปัจจัยใดมักเกิดร่วมกันในกลุ่มประชากรที่มีความเปราะบาง ซึ่งเป็นประโยชน์ต่อการวางแผนเชิงนโยบายที่ตรงจุดและมีประสิทธิภาพ ซึ่งจากผลการวิเคราะห์ พบว่าตัวชี้วัดบางคู่มีค่าสหสัมพันธ์สูงอย่างมีนัยสำคัญ (r > 0.8) ตัวอย่างเช่น  ด้านสุขภาพ  ในพื้นที่จังหวัดหนึ่ง ๆ ครัวเรือนที่ขาดความรู้ในการใช้ยาเพื่อบำบัดบรรเทาอาการเจ็บป่วยเบื้องต้นอย่างเหมาะสม มักจะเป็นครัวเรือนเดียวกับที่ขาดการจัดการด้านสุขภาพและความเป็นอยู่ในด้านอื่น ๆ ร่วมด้วย เช่น ขาดความรู้ในการป้องกันอุบัติภัยและภัยธรรมชาติ ไม่จัดบ้านให้สะอาดและถูกสุขลักษณะ มีสมาชิกในบ้านสูบบุหรี่หรือดื่มสุรา รวมถึงไม่มีการเก็บออมเงินและขาดรายได้ที่มั่นคง ซึ่งสะท้อนให้เห็นว่า ความรู้และพฤติกรรมด้านสุขภาพที่ดี ไม่ได้แยกขาดออกจากกัน แต่มักเกิดร่วมกันเป็นกลุ่มของความเปราะบางในชีวิตประจำวัน   ด้านการมีงานทำและรายได้  ในหลายจังหวัด หากคนวัยแรงงาน (อายุ 15–59 ปี) ไม่มีอาชีพหรือรายได้ มักจะเป็นจังหวัดเดียวกันกับที่ผู้สูงอายุ (อายุ 60 ปีขึ้นไป) ก็ไม่มีรายได้หรืออาชีพเช่นกัน และยังพบว่าจำนวนผู้ถือบัตรสวัสดิการแห่งรัฐมีจำนวนมากในพื้นที่เดียวกันด้วย ซึ่งสะท้อนให้เห็นว่า การไม่มีรายได้ในคนวัยทำงาน ไม่ได้ส่งผลเฉพาะกับตัวเขาเอง แต่ยังส่งผลต่อความสามารถในการดูแลผู้สูงอายุในครัวเรือน และเป็นภาพรวมของความยากจนในระดับครอบครัวและชุมชน นอกจากนี้ในจังหวัดที่ครัวเรือนขาดการเก็บออมเงิน มักจะเป็นครัวเรือนเดียวกับที่ขาดพฤติกรรมหรือระบบสนับสนุนอื่น ๆ ที่สะท้อนถึงความมีวินัยและการวางแผนชีวิต เช่น ขาดการป้องกันอุบัติภัยอย่างถูกวิธี สมาชิกครัวเรือนมีพฤติกรรมเสี่ยงอย่างการสูบบุหรี่ ไม่มีรายได้หรืออาชีพที่มั่นคง และไม่ปฏิบัติกิจกรรมทางศาสนาอย่างสม่ำเสมอ ซึ่งทั้งหมดนี้สะท้อนถึง ความเปราะบางทั้งด้านเศรษฐกิจ สังคม และพฤติกรรมส่วนบุคคล ที่มักจะเกิดร่วมกันในครัวเรือนกลุ่มเดียวกัน การไม่มีการออมจึงไม่ใช่เพียงปัญหาทางการเงิน แต่ยังเชื่อมโยงกับการขาดวินัย ขาดความรู้ด้านสุขภาพและความปลอดภัย รวมถึงการขาดหลักยึดทางจิตใจบางประการ ซึ่งบ่งชี้ว่าการส่งเสริมการออมควรมาควบคู่กับการพัฒนาพฤติกรรมสุขภาพ การมีรายได้ที่มั่นคง และการสร้างความเข้มแข็งทางสังคมในระดับครัวเรือนอย่างเป็นระบบ  ด้านสภาพแวดล้อมความเป็นอยู่  หลายจังหวัดพบว่า ครัวเรือนที่ไม่สามารถจัดการบ้านเรือนให้สะอาด เป็นระเบียบ และถูกสุขลักษณะได้ มักจะเป็นครัวเรือนเดียวกับที่มีพฤติกรรมสุขภาพและความเป็นอยู่ด้านอื่น ๆ ที่ไม่เหมาะสมร่วมด้วย เช่น สมาชิกในบ้านสูบบุหรี่ ขาดการป้องกันอุบัติภัย ไม่มีการเก็บออมเงิน รายได้ไม่มั่นคง และไม่ใส่ใจการตรวจสุขภาพหรือปฏิบัติกิจกรรมทางศาสนาอย่างสม่ำเสมอ ซึ่งสะท้อนให้เห็นว่า สุขภาวะของครัวเรือนไม่ได้จำกัดอยู่แค่เรื่องความสะอาดของบ้านเท่านั้น แต่ยังเกี่ยวพันกับวินัยทางการเงิน พฤติกรรมสุขภาพ และความเป็นอยู่โดยรวม นอกจากนี้พบว่า ครัวเรือนที่ไม่มีน้ำสะอาดเพียงพอสำหรับดื่มและบริโภคตลอดทั้งปี ก็มักจะเป็นครัวเรือนเดียวกับที่ไม่มีน้ำใช้เพียงพอในชีวิตประจำวันด้วย ซึ่งแสดงให้เห็นว่า ปัญหาด้านแหล่งน้ำในครัวเรือนไม่ได้เกิดแยกกัน แต่เป็นความขาดแคลนที่ครอบคลุมทั้งคุณภาพและปริมาณของน้ำ...
30 June 2025
AI Co-worker เพื่อนร่วมงานดิจิทัล: พลิกโฉมกระบวนการทำงานขององค์กรยุคใหม่ 
ปัญญาประดิษฐ์ (Artificial Intelligence: AI) กำลังกลายเป็นกระแสสำคัญที่พลิกโฉมรูปแบบการทำงานในยุคปัจจุบัน องค์กรทั่วโลกต่างเร่งลงทุนในเทคโนโลยี AI รวมมูลค่านับพันล้านดอลลาร์ โดยในสหรัฐอเมริกา มีถึง 92% ของบริษัทที่วางแผนเพิ่มงบประมาณด้าน AI อย่างไรก็ตาม กลับมีเพียงส่วนน้อยที่เชื่อมั่นว่าบริษัทของตนมีความพร้อมอย่างเต็มที่ในการนำ AI ไปใช้ได้อย่างมีประสิทธิภาพ รายงานวิจัยหลายฉบับประเมินว่า AI จะสามารถสร้างมูลค่าเพิ่มให้เศรษฐกิจโลกได้สูงถึง 4.4 ล้านล้านดอลลาร์ภายในปี 2030 ขณะเดียวกัน World Economic Forum ได้คาดการณ์ว่า Generative AI จะเข้ามามีบทบาทในประมาณ 40% ของชั่วโมงการทำงานทั่วโลก ซึ่งจะส่งผลให้ลักษณะงานของแรงงานจำนวนมากเปลี่ยนแปลงไปอย่างมาก กล่าวได้ว่า AI ในฐานะผู้ช่วยยุคใหม่ กำลังเข้ามาทำงานที่มีลักษณะซ้ำซ้อนแทนมนุษย์ และในขณะเดียวกันยังช่วยเสริมศักยภาพ เพิ่มประสิทธิภาพ และเปิดโอกาสใหม่ในการทำงานอย่างที่ไม่เคยมีมาก่อน  AI ในบทบาทของ “เพื่อนร่วมงานดิจิทัล” กำลังเข้ามาช่วยลดเวลาในการทำงานในแต่ละภารกิจได้อย่างมีประสิทธิภาพ งานวิจัยจากสถาบัน MIT ระบุว่า เครื่องมืออย่าง ChatGPT ช่วยให้พนักงานสามารถเขียนอีเมล เอกสาร และบทวิเคราะห์ได้เร็วขึ้นถึง 40% ขณะเดียวกัน การใช้ AI ในการเขียนโค้ดช่วยลดระยะเวลาในการพัฒนาซอฟต์แวร์ได้ถึง 56% ในแวดวงการแพทย์ ระบบ Generative AI ของ Northwestern Medicine ถูกนำมาใช้ในการร่างรายงานทางรังสีวิทยาโดยอัตโนมัติ เพิ่มประสิทธิภาพได้ 15–40% โดยบางกรณีสามารถช่วยให้รังสีแพทย์ปฏิบัติงานได้เร็วขึ้นเป็นสองเท่า สำหรับภาคบริการ หลายองค์กรเริ่มนำระบบ chatbot มาใช้เพื่อตอบคำถามทั่วไปได้ตลอด 24 ชั่วโมง โดยสามารถจัดการคำถามเบื้องต้นแทนเจ้าหน้าที่ได้ถึง 80% อย่างรวดเร็วและต่อเนื่อง เครื่องมือ AI จึงมีบทบาทสำคัญในฐานะผู้ช่วยด้านการจัดตารางงาน การให้บริการลูกค้า การร่างสัญญา และการวางแผนข้อมูล ส่งผลให้พนักงานมีเวลาไปมุ่งเน้นงานที่สร้างคุณค่าและผลลัพธ์เชิงกลยุทธ์มากยิ่งขึ้น  ปัจจุบันองค์กรต่าง ๆ ได้นำเทคโนโลยีปัญญาประดิษฐ์ (AI) เข้ามาประยุกต์ใช้ในกระบวนการทำงานในหลายภาคส่วน เพื่อยกระดับประสิทธิภาพและความรวดเร็วในการดำเนินงาน ตัวอย่างที่ชัดเจน ได้แก่  เครื่องมือ AI เหล่านี้กำลังมีบทบาทสำคัญในการสนับสนุนการตัดสินใจขององค์กรอย่างมีประสิทธิภาพ การสำรวจหนึ่งระบุว่า 80% ของพนักงานที่ใช้ AI เชื่อว่าเครื่องมือดังกล่าวช่วยให้พวกเขาทำงานได้ดีขึ้นอย่างชัดเจน โดยเฉพาะในด้านการขายและการตลาด AI ยังสามารถช่วยปรับแต่งเนื้อหาให้เหมาะกับลูกค้าแต่ละกลุ่ม และสร้างกลุ่มเป้าหมายใหม่ได้รวดเร็วและแม่นยำ ส่งผลให้ความเร็วในการตัดสินใจและการดำเนินกลยุทธ์ขององค์กรเพิ่มขึ้นอย่างต่อเนื่อง  ข้อมูลจากงานวิจัยระดับโลก  ผลการวิจัยจากหลายแหล่งสะท้อนให้เห็นถึงการเติบโตอย่างรวดเร็วของการใช้เทคโนโลยีปัญญาประดิษฐ์ (AI) และความคาดหวังที่เพิ่มขึ้นอย่างต่อเนื่อง รายงานของ McKinsey ในปี 2025 ระบุว่า กว่า 75% ของบริษัททั่วโลกได้เริ่มนำ AI มาใช้ในอย่างน้อยหนึ่งฟังก์ชันขององค์กร และเกือบทุกบริษัทมีแผนจะลงทุนเพิ่มเติมในด้าน AI ขณะที่รายงานของ Thomson Reuters คาดการณ์ว่า ในอนาคตอันใกล้ มากกว่า 50% ของรูปแบบงานจะมีความเกี่ยวข้องกับ AI โดยตรง โมเดลเศรษฐศาสตร์ของ McKinsey ยังประเมินว่า เทคโนโลยี Generative AI เพียงอย่างเดียว อาจสามารถเพิ่มผลิตภัณฑ์มวลรวมภายในประเทศ (GDP) ได้ถึง 0.6% ต่อปี ภายในปี 2040  ในด้านมุมมองของแรงงาน รายงานของ OECD พบว่า พนักงาน 4 ใน 5 คนที่ได้ใช้งาน AI ระบุว่าประสิทธิภาพในการทำงานของตนดีขึ้น และ 3 ใน 5 คนรู้สึกว่างานของตนสนุกมากขึ้น การใช้ AI อย่างต่อเนื่องส่งผลให้เกิดความต้องการในการพัฒนาทักษะและฝึกอบรมเพิ่มเติมอย่างต่อเนื่องเช่นกัน ที่น่าสนใจคือ พนักงานมีแนวโน้มที่จะมองเห็นศักยภาพของ AI มากกว่าผู้บริหารถึง 3 เท่า ขณะเดียวกัน ซีอีโอจำนวนมากยังรับรู้ถึงความเสี่ยงในการสูญเสียความสามารถในการแข่งขัน หากองค์กรของตนปรับตัวด้าน AI ได้ล่าช้า โดยถึง 32% ของซีอีโอเห็นว่าเรื่องนี้เป็นความเสี่ยงสำคัญที่ต้องเร่งรับมือ  โอกาสและความท้าทายในการใช้งาน AI  แม้ว่าประสิทธิภาพของเทคโนโลยีปัญญาประดิษฐ์ (AI) จะได้รับการยอมรับอย่างกว้างขวาง แต่การนำ AI เข้ามาใช้งานในองค์กรยังคงมาพร้อมกับความท้าทายที่ไม่อาจมองข้าม ผู้บริหารบางรายรายงานว่าการเปลี่ยนผ่านสู่นวัตกรรมใหม่ในช่วงเริ่มต้นอาจทำให้กระบวนการทำงานสะดุด เช่น กำลังการผลิตของโรงงานบางแห่งลดลงในระหว่างการปรับปรุงระบบ แม้ AI จะช่วยลดภาระจากงานที่ซ้ำซากและใช้เวลามาก แต่ก็อาจกระทบต่อแรงจูงใจภายในของพนักงานในงานด้านอื่น ๆ ที่ต้องใช้ความคิดสร้างสรรค์และแรงบันดาลใจ นอกจากนี้ พนักงานจำนวนไม่น้อยยังมีความกังวลเกี่ยวกับผลกระทบในระยะยาว งานสำรวจของ OECD พบว่า 60% ของผู้ตอบแบบสอบถามกังวลว่า AI อาจเข้ามาแทนที่งานของตนภายใน 10 ปีข้างหน้า และ 40% กังวลว่า AI อาจส่งผลกระทบต่อระดับรายได้หรือความมั่นคงในสายอาชีพของตน  นอกจากผลกระทบด้านแรงงาน ยังมีประเด็นสำคัญที่ต้องพิจารณา เช่น ความเสี่ยงด้านความเป็นส่วนตัว อคติในอัลกอริทึม และความมั่นคงปลอดภัยทางไซเบอร์ ทั้งนี้ รายงานของ McKinsey ระบุว่า พนักงานเกือบครึ่งหนึ่งแสดงความกังวลเกี่ยวกับความแม่นยำและความปลอดภัยของระบบ AI ผู้เชี่ยวชาญจึงเห็นพ้องว่าการกำกับดูแล AI อย่างมีประสิทธิภาพเป็นสิ่งจำเป็น องค์กรควรแต่งตั้งผู้นำที่ชัดเจนสำหรับการขับเคลื่อนด้าน AI ออกแบบกระบวนการทำงานใหม่อย่างมีระบบ และสร้างความไว้วางใจระหว่างผู้มีส่วนได้ส่วนเสีย การฝึกอบรมพนักงานให้สามารถใช้ AI อย่างรับผิดชอบ การตรวจสอบความลำเอียงของอัลกอริทึม และการกำหนดบทบาทความรับผิดชอบอย่างชัดเจน ล้วนเป็นกลไกสำคัญที่สนับสนุนการใช้งาน AI อย่างยั่งยืน  ผู้นำหลายภาคส่วนยอมรับว่า แม้งานบางประเภทอาจได้รับผลกระทบจาก AI แต่ในขณะเดียวกันก็เป็นโอกาสในการสร้างทักษะใหม่ ๆ ขึ้นมา รายงานของ World Economic Forum (WEF) ชี้ว่า Generative AI มีศักยภาพในการยกระดับคุณภาพของงาน เพิ่มความหมายของการทำงาน และลดภาระจากงานที่น่าเบื่อและซ้ำซาก อย่างไรก็ตาม ผู้กำหนดนโยบายของสหภาพยุโรป (EU) ได้เตือนว่า 23–29% ของงานในปัจจุบันอยู่ในกลุ่มที่มี “ความเสี่ยงสูง” ที่จะถูกแทนที่โดย AI อย่างไรก็ดี งานเหล่านี้อาจไม่หายไปทั้งหมด เพราะ AI อาจเข้ามาเติมเต็มขีดความสามารถของมนุษย์ เปลี่ยนผู้เริ่มต้นให้กลายเป็นผู้เชี่ยวชาญ  นักวิจัยส่วนใหญ่เห็นตรงกันว่า องค์กรที่นำ AI มาใช้อย่างจริงจัง ควบคู่กับการลงทุนด้านบุคลากร จริยธรรม และความรับผิดชอบ จะมีความได้เปรียบในการแข่งขันอย่างยั่งยืน งานวิจัยของ McKinsey ย้ำชัดว่า องค์กรที่มอง AI เป็นเครื่องมือสนับสนุนและเสริมศักยภาพของพนักงาน จะสามารถสร้างการเปลี่ยนแปลงที่มีผลลัพธ์ชัดเจน และวัดผลตอบแทนจากการลงทุนได้อย่างเป็นรูปธรรม  ดังนั้น ผู้นำที่สามารถสร้างสมดุลระหว่างการนำนวัตกรรมใหม่เข้าสู่องค์กร การวางกรอบกำกับดูแลที่เหมาะสม และการพัฒนาทักษะของพนักงานอย่างต่อเนื่อง คือผู้ที่จะพาองค์กรก้าวไปสู่ความสำเร็จอย่างมั่นคงในยุคแห่ง AI  บทสรุป: ก้าวสู่อนาคตด้วย AI อย่างมีวิสัยทัศน์และความรับผิดชอบ  AI กำลังเปลี่ยนโฉมโลกของการทำงานอย่างรวดเร็วและลึกซึ้ง...
24 June 2025
Big Data ผสาน AI Agent: พลังอัจฉริยะสู่เกราะป้องกันภัยไซเบอร์ยุคดิจิทัล 
ในยุคดิจิทัลที่เทคโนโลยีก้าวหน้าอย่างรวดเร็ว ภัยไซเบอร์ได้กลายเป็นความท้าทายสำคัญที่ทั้งองค์กรและบุคคลทั่วไปต้องเผชิญ  การโจมตีที่มีความซับซ้อนและหลากหลายรูปแบบ เช่น แรนซัมแวร์ (Ransomware), ฟิชชิ่ง (Phishing) หรือการบุกรุกเครือข่าย ทำให้มาตรการป้องกันแบบดั้งเดิมไม่เพียงพออีกต่อไป  ด้วยเหตุนี้ ในปี 2025 ได้มีการนำ Big Data และ AI Agent เข้ามาผสานรวมกันเพื่อสร้างระบบรักษาความปลอดภัยที่มีประสิทธิภาพและสามารถตอบสนองแบบเรียลไทม์  บทบาทของ Big Data ในการป้องกันภัยไซเบอร์  Big Data มีบทบาทสำคัญในการป้องกันภัยไซเบอร์โดยการรวบรวมและวิเคราะห์ข้อมูลจำนวนมหาศาลจากหลากหลายแหล่ง ซึ่งรวมถึงข้อมูลจากระบบเครือข่าย, เซ็นเซอร์ความปลอดภัย, กิจกรรมผู้ใช้ และข้อมูลภัยคุกคามทั่วโลก ข้อมูลเหล่านี้ช่วยให้ระบบรักษาความปลอดภัยสามารถทำความเข้าใจรูปแบบการโจมตีที่เปลี่ยนแปลงไปได้อย่างรวดเร็วและแม่นยำยิ่งขึ้น ตัวอย่างเช่น การวิเคราะห์ข้อมูลบันทึก (log) จากเซิร์ฟเวอร์และอุปกรณ์เครือข่ายแบบเรียลไทม์ ทำให้สามารถตรวจจับพฤติกรรมที่ผิดปกติซึ่งอาจบ่งชี้ถึงการบุกรุก หรือการแพร่ระบาดของมัลแวร์ได้อย่างรวดเร็ว  AI Agent: ตัวกระทำอัจฉริยะในโลกของปัญญาประดิษฐ์  AI Agent (ตัวแทนปัญญาประดิษฐ์) หมายถึง ระบบหรือโปรแกรมที่สามารถรับข้อมูลจากสิ่งแวดล้อม (Input) ประมวลผลเพื่อวิเคราะห์สถานการณ์ และดำเนินการตอบสนอง (Action) ตามวัตถุประสงค์ที่กำหนดไว้โดยอัตโนมัติ โดยไม่จำเป็นต้องมีมนุษย์ควบคุมตลอดเวลา  AI Agent โดยทั่วไปจะประกอบด้วยองค์ประกอบหลัก 3 ส่วน ได้แก่  AI Agent ถูกนำไปใช้งานในหลากหลายบริบท ไม่ว่าจะเป็นหุ่นยนต์ในสายการผลิตที่สามารถทำงานซ้ำ ๆ ได้อย่างแม่นยำ ผู้ช่วยเสมือน (Virtual Assistant) เช่น Siri หรือ Alexa ที่สามารถโต้ตอบและช่วยจัดการงานต่าง ๆ ให้กับผู้ใช้ ระบบแนะนำสินค้าในแพลตฟอร์มอีคอมเมิร์ซที่ช่วยวิเคราะห์พฤติกรรมผู้บริโภคเพื่อเสนอสินค้าที่ตรงความต้องการ และหนึ่งในบริบทที่มีความสำคัญอย่างยิ่งคือ การนำ AI Agent มาใช้ในด้านการรักษาความปลอดภัยทางไซเบอร์  AI Agent กับการตอบสนองภัยไซเบอร์แบบอัตโนมัติ  ในบริบทของความปลอดภัยทางไซเบอร์ AI Agent คือระบบปัญญาประดิษฐ์ที่ได้รับการออกแบบให้สามารถตรวจจับ วิเคราะห์ และตอบสนองต่อภัยคุกคามได้โดยอัตโนมัติ ภายในปี 2025 เทคโนโลยี AI Agent มีความสามารถก้าวหน้าอย่างมาก โดยสามารถเรียนรู้จากข้อมูลขนาดใหญ่ (Big Data) เพื่อนำไปสู่การตรวจจับภัยคุกคามรูปแบบใหม่ที่ไม่เคยปรากฏมาก่อน (Zero-day threats) ได้อย่างมีประสิทธิภาพ  AI Agent สามารถดำเนินการตอบสนองได้แบบเรียลไทม์ ไม่ว่าจะเป็นการบล็อกการโจมตีก่อนเกิดความเสียหาย การแจ้งเตือนผู้ดูแลระบบทันทีเมื่อพบพฤติกรรมที่ผิดปกติ หรือแม้กระทั่งการตอบสนองเชิงรุกโดยไม่ต้องรอคำสั่งจากมนุษย์ ความสามารถเหล่านี้ช่วยลดภาระของทีมรักษาความปลอดภัย และเสริมสร้างความสามารถขององค์กรในการป้องกันและรับมือกับภัยคุกคามทางไซเบอร์ได้อย่างมีประสิทธิภาพมากยิ่งขึ้น  การใช้ Big Data และ AI Agent ร่วมกันสร้างระบบป้องกันภัยไซเบอร์ที่ยืดหยุ่นและทันสมัย  การผสานศักยภาพของ Big Data เข้ากับความสามารถของ AI Agent ได้กลายเป็นกลยุทธ์สำคัญในการพัฒนาระบบรักษาความปลอดภัยทางไซเบอร์ในยุคปัจจุบัน โดย Big Data มีบทบาทในการจัดเก็บและวิเคราะห์ข้อมูลขนาดใหญ่ที่มีความหลากหลายและซับซ้อนอย่างมีประสิทธิภาพ ขณะที่ AI Agent ทำหน้าที่เรียนรู้จากข้อมูลเหล่านั้น เพื่อนำมาใช้ในการคาดการณ์ ตรวจจับ และตอบสนองต่อภัยคุกคามได้อย่างชาญฉลาดและทันท่วงที  นอกจากนี้ แนวโน้มสำคัญที่กำลังได้รับความสนใจ คือการพัฒนา AI Agent ให้ทำงานร่วมกันในรูปแบบของ Multi-agent System ซึ่งเป็นเครือข่ายของเอเจนต์อัจฉริยะที่สามารถแบ่งหน้าที่ ประสานการทำงาน และตัดสินใจร่วมกันในลักษณะกระจายศูนย์ (Distributed) โครงสร้างแบบนี้ช่วยเพิ่มขีดความสามารถในการเฝ้าระวังและตอบสนองต่อภัยคุกคามจากหลายจุดในเวลาเดียวกัน จึงเหมาะสมอย่างยิ่งสำหรับองค์กรที่มีระบบโครงสร้างพื้นฐานด้านเทคโนโลยีสารสนเทศขนาดใหญ่และซับซ้อน  เทคนิคที่ใช้ในการพัฒนา AI Agent สำหรับป้องกันภัยไซเบอร์  การพัฒนา AI Agent สำหรับรับมือกับภัยคุกคามไซเบอร์จำเป็นต้องอาศัยเทคนิคขั้นสูงที่สามารถวิเคราะห์ข้อมูลจำนวนมาก เรียนรู้พฤติกรรม และตัดสินใจตอบสนองได้อย่างแม่นยำและรวดเร็ว โดยเทคนิคที่นิยมใช้มีหลายรูปแบบ ซึ่งแต่ละเทคนิคมีจุดเด่นที่เหมาะสมกับสถานการณ์และลักษณะของภัยคุกคามที่แตกต่างกัน โดยจะขอยกตัวอย่าง ดังนี้  เทคนิคการเรียนรู้แบบมีผู้สอน (Supervised Learning) อาศัยชุดข้อมูลที่มีการระบุผลลัพธ์ล่วงหน้า (labeled data) เช่น ข้อมูลเหตุการณ์ด้านความปลอดภัยที่ถูกจัดประเภทว่าเป็นภัยคุกคามหรือไม่ AI Agent จะเรียนรู้จากรูปแบบที่พบในข้อมูลเหล่านี้ และสามารถนำไปใช้จำแนกเหตุการณ์ใหม่ในอนาคตได้อย่างแม่นยำ ตัวอย่างการประยุกต์ใช้งาน ได้แก่ การตรวจจับอีเมลฟิชชิ่ง (Phishing Detection) และการวิเคราะห์ทราฟฟิกเครือข่ายเพื่อกรองกิจกรรมที่มีความผิดปกติ  รูปที่ 1 Supervised Learning (Source: https://medium.com/@dhara732002/supervised-machine-learning-a-beginners-guide-9ac0b07eccbb)  เทคนิคการเรียนรู้แบบไม่มีผู้สอน (Unsupervised Learning) มีหลักการที่แตกต่างจาก Supervised Learning โดยไม่ใช้ข้อมูลที่มีการระบุผลลัพธ์ล่วงหน้า (unlabeled data) แต่ให้ AI Agent ค้นหารูปแบบหรือโครงสร้างในข้อมูลด้วยตนเอง เทคนิคนี้เหมาะสำหรับการวิเคราะห์ข้อมูลจำนวนมากที่ไม่มีการจัดประเภทล่วงหน้า โดยเฉพาะในสถานการณ์ที่ภัยคุกคามมีพฤติกรรมแปลกใหม่และไม่เคยปรากฏมาก่อน  ตัวอย่างการใช้งาน ได้แก่ การใช้เทคนิค Clustering เพื่อจัดกลุ่มพฤติกรรมที่คล้ายกัน และการประยุกต์ใช้ Anomaly Detection เพื่อระบุเหตุการณ์หรือทราฟฟิกที่เบี่ยงเบนจากพฤติกรรมปกติของระบบ ซึ่งอาจเป็นสัญญาณของการโจมตีหรือกิจกรรมที่มีความเสี่ยง  รูปที่ 2 Unsupervised Learning  (Source: https://www.mathworks.com/discovery/unsupervised-learning.html)  Reinforcement Learning เป็นเทคนิคที่ช่วยให้ AI Agent สามารถเรียนรู้จากประสบการณ์โดยอาศัยกลไกของการทดลองและการได้รับรางวัล (trial-and-error with reward signals) ระบบจะทดลองดำเนินการตอบสนองต่อภัยคุกคามในรูปแบบต่าง ๆ และปรับปรุงกลยุทธ์ของตนเองอย่างต่อเนื่อง โดยมีเป้าหมายเพื่อเพิ่มผลลัพธ์ที่ต้องการให้สูงที่สุด  เทคนิคนี้เหมาะอย่างยิ่งสำหรับสถานการณ์ที่มีความซับซ้อนและเปลี่ยนแปลงตลอดเวลา เช่น การจัดการเหตุการณ์แบบหลายขั้นตอน (multi-step attacks) การควบคุมแบบไดนามิก หรือการตอบสนองต่อภัยคุกคามอย่างอัตโนมัติตามนโยบายด้านความปลอดภัยขององค์กร โดยไม่ต้องพึ่งพาการป้อนข้อมูลตัวอย่างจำนวนมากล่วงหน้าเหมือนในเทคนิคแบบ Supervised  รูปที่ 3 Reinforcement Learning  (Source: https://www.enterrasolutions.com/is-reinforcement-learning-the-future-of-artificial-intelligence)  Natural Language Processing (NLP) เป็นเทคนิคที่ช่วยให้ AI Agent สามารถเข้าใจและประมวลผลข้อมูลในรูปแบบข้อความ ซึ่งถือเป็นองค์ประกอบสำคัญในการวิเคราะห์ข้อมูลที่ไม่เป็นโครงสร้าง (unstructured data) โดยเฉพาะในงานด้านความปลอดภัยไซเบอร์ที่เกี่ยวข้องกับอีเมล เอกสาร รายงาน หรือข้อความจากแหล่งข่าวกรองภัยคุกคาม  ตัวอย่างการประยุกต์ใช้งาน ได้แก่ การวิเคราะห์เนื้อหาในอีเมลเพื่อระบุความเสี่ยงจากฟิชชิ่ง การสกัดข้อมูลภัยคุกคามจากรายงานเชิงเทคนิคหรือโพสต์ในฟอรั่มของแฮกเกอร์ และการสร้างระบบแจ้งเตือนอัตโนมัติจากข้อมูล Threat Intelligence ที่อยู่ในรูปแบบข้อความ ความสามารถของ NLP ช่วยให้ AI Agent เข้าใจเจตนา วิเคราะห์บริบท และสรุปสาระสำคัญจากข้อความเหล่านั้นได้อย่างมีประสิทธิภาพ  รูปที่ 4 Natural Language Processing  (Source: https://amazinum.com/insights/what-is-nlp-and-how-it-is-implemented-in-our-lives/)  ความท้าทายในอนาคต  แม้ว่าการผสานเทคโนโลยี Big Data เข้ากับ AI Agent จะช่วยยกระดับศักยภาพในการป้องกันภัยคุกคามทางไซเบอร์ได้อย่างมีนัยสำคัญ แต่อนาคตยังคงเต็มไปด้วยความท้าทายทั้งในด้านเทคนิค ปฏิบัติการ และจริยธรรม ซึ่งองค์กรจำเป็นต้องให้ความสำคัญอย่างรอบด้าน ดังนี้:  แฮกเกอร์และกลุ่มอาชญากรไซเบอร์ยังคงพัฒนาเทคนิคการโจมตีรูปแบบใหม่อย่างไม่หยุดยั้ง อาทิ การใช้ AI...
16 June 2025
ทักษะที่ควรพัฒนาเพื่อการอยู่รอดในตลาดแรงงาน 
ในโลกยุคปัจจุบัน เทคโนโลยีด้านดิจิทัลเข้ามามีบทบาทในการดำรงชีวิตประจำวันของผู้คนทั่วไป รวมถึงการใช้ในการดำเนินธุรกิจต่าง ๆ การเปิดตัวของ “ปัญญาประดิษฐ์นักสร้าง” หรือ “Generative AI” โดยเฉพาะ ChatGPT แชทบอทอัจฉริยะที่ถูกพัฒนาโดย OpenAI ที่มีจำนวนผู้ใช้งานทะลุ 100 ล้านคนต่อเดือนภายในเวลาหลังเปิดตัวเพียง 2 เดือน นับว่าเป็นแอปพลิเคชันที่เติบโตเร็วที่สุดในประวัติศาสตร์ และนับวันจะยิ่งมีปัญญาประดิษฐ์ที่มีความเชี่ยวชาญเฉพาะด้านเพิ่มมากขึ้น รวมถึงสามารถช่วยทำงานด้านต่าง ๆ ได้หลากหลาย และมีประสิทธิภาพ ตอบสนองความต้องการของผู้ใช้งานได้มากขึ้น บรรดาผู้เชี่ยวชาญในแวดวงต่าง ๆ จึงมีความกังวล และตั้งคำถามในทำนองที่ว่า “มนุษย์จะตกงานมากขึ้น จากการเข้ามาแทนที่ด้วย AI หรือไม่?” มนุษย์อย่างพวกเราในฐานะแรงงานจะปรับตัวอย่างไร มีทักษะใดที่ควรพัฒนาเพื่อความอยู่รอดบ้าง บทความนี้มีคำตอบ
9 June 2025
Data Visualization ช่วยเราเข้าใจแผ่นดินไหวได้อย่างไร
แผ่นดินไหวเป็นภัยธรรมชาติที่สร้างความเสียหายมหาศาลต่อชีวิตและทรัพย์สิน การเข้าใจรูปแบบการเกิดแผ่นดินไหวผ่านการวิเคราะห์ข้อมูลและการแสดงผลข้อมูลเชิงภาพ (Data Visualization) จึงมีบทบาทสำคัญอย่างยิ่งในการเตรียมพร้อมรับมือและลดผลกระทบจากภัยพิบัติดังกล่าว บทความนี้นำเสนอวิธีการใช้ Data Visualization เพื่อทำความเข้าใจแผ่นดินไหวในมิติต่าง ๆ ความสำคัญของ Data Visualization ในการศึกษาแผ่นดินไหว การแสดงผลข้อมูลเชิงภาพช่วยให้เราสามารถเห็นรูปแบบและความสัมพันธ์ของข้อมูลที่ซับซ้อนได้อย่างชัดเจน สำหรับปรากฏการณ์แผ่นดินไหว การใช้ Data Visualization มีประโยชน์หลายประการ ดังนี้ การติดตามแผ่นดินไหว ณ เวลาปัจจุบัน (Real-time earthquake monitoring) ปัจจุบันมีระบบติดตามแผ่นดินไหวแบบเรียลไทม์หลายระบบ เช่น USGS Earthquake Map ที่จัดทำโดยสำนักงานธรณีวิทยาแห่งสหรัฐอเมริกา (USGS) โดยสามารถแสดงข้อมูลแผ่นดินไหวทั่วโลกแบบเรียลไทม์ (ภาพที่ 1) แสดงแผนที่ตำแหน่งการเกิดเหตุแผ่นดินไหวที่เกิดขึ้นล่าสุด เพื่อให้สามารถเข้าใจได้โดยง่าย แผนที่การเกิดแผ่นดินไหวจึงมักอยู่ในรูปแบบพื้นฐานที่ใช้แสดงตำแหน่งของแผ่นดินไหว โดยนิยมใช้จุด (Points) ที่มีขนาดและสีแตกต่างกันเพื่อแสดงความรุนแรงของแผ่นดินไหว การประยุกต์ใช้ Data Visualization ในการศึกษาแผ่นดินไหวมีความท้าทายสำคัญประการแรกคือการจัดการกับข้อมูลขนาดใหญ่ที่ไหลมาจากเครือข่ายเซนเซอร์จำนวนมาก ซึ่งจำเป็นต้องพัฒนาระบบการประมวลผลและแสดงผลแบบเรียลไทม์เพื่อให้ข้อมูลล่าสุดพร้อมใช้งานสำหรับการวิเคราะห์และติดตามสถานการณ์ นอกจากนี้ การออกแบบ Visualization ที่ซับซ้อนให้เข้าใจง่ายสำหรับประชาชนทั่วไปยังเป็นอีกความท้าทาย เพื่อให้การสื่อสารความเสี่ยงและการเตรียมพร้อมรับมือภัยพิบัติเป็นไปอย่างมีประสิทธิภาพ ปัจจุบัน สถาบันข้อมูลขนาดใหญ่ (องค์การมหาชน) ได้มีการจัดทำแดชบอร์ดติดตามสถานการณ์การเกิดแผ่นดินไหวในประเทศไทยและประเทศข้างเคียง (ภาพที่ 2) ซึ่งสามารถติดตามการกระจายตัว ขนาด ความถี่ รวมถึงแนวโน้มเชิงเวลาของ aftershocks ที่ปกติจะมีการเกิดขึ้นตามมาหลังจากการเกิดแผ่นดินไหวลูกใหญ่ (mainshock) ซึ่งโดยปกติจำนวน ขนาด และความถี่ของ aftershocks จะลดลงตามเวลาที่ผ่านไปหลังจากการเกิด mainshock ตามที่แสดงในภาพที่ 3 Data Visualization จึงเป็นเครื่องมือสำคัญในการทำความเข้าใจปรากฏการณ์แผ่นดินไหว การพัฒนาเทคนิคการแสดงผลข้อมูลที่มีประสิทธิภาพจะช่วยให้ประชาชนทั่วไปเข้าใจความเสี่ยงและเตรียมพร้อมรับมือกับแผ่นดินไหวได้ดียิ่งขึ้น ซึ่งในที่สุดจะช่วยลดความสูญเสียต่อชีวิตและทรัพย์สินจากภัยพิบัติทางธรรมชาติชนิดนี้ เอกสารอ้างอิง
28 April 2025
สร้างสีสันให้ Dashboard ด้วย Dynamic Icons ใน Power BI: เทคนิคง่าย ๆ ที่ทำให้ข้อมูลของคุณมีชีวิต
คุณเคยรู้สึกว่าการนำเสนอข้อมูลของคุณยังขาดความน่าสนใจหรือไม่ ลองนึกภาพดูว่าถ้าคุณสามารถเพิ่มชีวิตชีวาให้กับตัวเลขและกราฟของคุณด้วยไอคอนที่เปลี่ยนแปลงอย่างมีชีวิตชีวาตามข้อมูลจริง จะเป็นอย่างไร วันนี้เราจะมาเรียนรู้วิธีสร้าง Dynamic Icons ใน Power BI – เทคนิคที่จะทำให้ Dashboard ของคุณโดดเด่น สื่อสารข้อมูลได้อย่างมีประสิทธิภาพ และสร้างความประทับใจให้กับผู้ชมของคุณ บทความนี้จะอธิบายถึงการสร้างไอคอนที่มีการเปลี่ยนแปลงไปตามข้อมูลหรือ Dynamic icons ที่ใช้งานในโปรแกรม Power BI ตัวอย่างดังรูปที่ 1 เมื่อค่าผลรวมกำไรมีค่ามากกว่า 0 จะแสดงสัญลักษณ์ลูกศรชี้ขึ้นสีเขียว  แต่หากค่าผลรวมกำไรมีค่าน้อยกว่า 0 จะแสดงสัญลักษณ์ลูกศรชี้ลงสีแดง           การนำเสนอดังกล่าวแสดงผลผ่าน Card (new) โดยทำการเพิ่มรูปภาพร่วมกับการแสดงผลของค่า ซึ่งการแสดงของไอคอนนั้นจะต้องสร้างสูตร (Measure) เพื่อระบุเงื่อนไขในการแสดงผล โครงสร้างสูตรเบื้องต้นมีส่วนประกอบดังรูปที่ 2 ภายใน “” จะต้องนำโค้ดของการแปลงไอคอนให้อยู่ในรูป image base64 เรียบร้อยแล้ว           ก่อนอื่น เราสามารถค้นหาไอคอนที่ต้องการนำมาใช้งานได้จาก Flaticon ที่มีไอคอนฟรีมากมายให้เลือกใช้ โดยเลือกตัวเลือกการดาวน์โหลดเป็นไฟล์ PNG ขนาด 32px           จากนั้นนำภาพที่ได้ไปอัปโหลดและแปลงเป็นไฟล์ภาพ Base64 ที่ https://www.base64-image.de/           ให้ทำการกดปุ่ม copy image เพื่อนำโค้ดที่ได้ไปวางในสูตรที่เตรียมไว้ จะได้ผลลัพธ์ดังรูปที่ 5 สุดท้ายให้เปลี่ยน Data category ของสูตรเป็น Image URL ดังรูปที่ 6           สร้าง Card (new) โดยเลือกข้อมูลที่ต้องการแสดงผลมาใส่ ที่ Format visual ในเมนู Image เลือก Image type: Image URL ดังรูปที่ 7 จากนั้นคลิกที่ปุ่ม Conditional formatting จะปรากฏหน้าต่างดังรูปที่ 8 เลือกสูตรที่สร้างไว้มาใส่ กดปุ่ม OK           จะได้ผลลัพธ์เป็นค่าพร้อมด้วยไอคอนที่ปรับเปลี่ยนตามสูตรที่ต้องการแล้ว นอกจากนี้การแสดงผลสามารถเลือกเฉพาะ Dynamic icons โดยปิดการแสดงผล Values           การแสดงผลสภาพอากาศมักถูกแสดงด้วยไอคอนที่เกี่ยวกับเมฆและฝน ดังแสดงในรูปที่ 8 จะเป็นการแสดงผลสภาพอากาศ 7 วันด้วยการใช้ Dynamic icons ในกรณีที่มีการวิเคราะห์สถานการณ์เสี่ยงน้ำแล้งและน้ำท่วมสามารถแสดงผลความรุนแรงของความเสี่ยงด้วยสี อาจจะใช้เพียงจุดสีธรรมดาในการแสดงผล Dynamic Icons เป็นเครื่องมือที่มีประโยชน์สำหรับการสร้าง Visuals ที่น่าสนใจและเข้าใจง่ายใน Power BI ช่วยให้นักวิเคราะห์สื่อสารข้อมูลเชิงลึกแบบเรียลไทม์ เรายังมีเทคนิคอีกมากมายที่จะช่วยยกระดับการนำเสนอข้อมูลของคุณใน Power BI ให้น่าสนใจยิ่งขึ้น อย่าลืมติดตามบทความอื่น ๆ ของเราเพื่อเรียนรู้เทคนิคและเคล็ดลับใหม่ ๆ ที่จะช่วยให้คุณกลายเป็นผู้เชี่ยวชาญด้านการวิเคราะห์และนำเสนอข้อมูล เราพร้อมที่จะแบ่งปันความรู้และไอเดียสร้างสรรค์ใหม่ ๆ อยู่เสมอ มาร่วมเป็นส่วนหนึ่งในการพัฒนาทักษะการใช้ Power BI ไปด้วยกันนะคะ บทความโดย ขวัญศิริ ศิริมังคลาตรวจทานและปรับปรุงโดย นววิทย์ พงศ์อนันต์ อ้างอิง
30 July 2024
การประยุกต์ใช้ข้อมูลทางอุตุฯเพื่อการเกษตร ท่องเที่ยว และการเดินเรือ
ข้อมูลทางอุตุนิยมวิทยามีผลต่อการวางแผนในการดำเนินกิจกรรมต่าง ๆ มากมาย บทความนี้จะยกตัวอย่างการประยุกต์ใช้ข้อมูลทางอุตุนิยมวิทยาสำหรับการวางแผนการเพาะปลูกข้าวนาน้ำฝน การวางแผนสำหรับการท่องเที่ยว รวมทั้งการเฝ้าระวังในการเดินเรืออีกด้วย กรมอุตุนิยมวิทยา ร่วมกับ GBDi ในการนำข้อมูล Big Data ทางอุตุนิยมวิทยาของกรมอุตุฯ มาประยุกต์ใช้ เพื่อนำเสนอข้อมูลการพยากรณ์อากาศให้เกิดประโยชน์ต่อภาคส่วนต่าง ๆ โดยในระยะเริ่มต้น GBDi ให้การสนับสนุนกรมอุตุฯในด้านการทำ Data Visualization และ Data Analytics ซึ่งเป็นการขับเคลื่อนโครงการในระยะสั้นเพื่อแสดงให้เห็นถึงประโยชน์ของการเชื่อมโยงและการวิเคราะห์ข้อมูลอุตุนิยมวิทยา ผ่าน 3 โครงการหลัก ดังนี้ 1. อุตุนิยมวิทยาเพื่อการเกษตร อุตุนิยมวิทยาเพื่อการเกษตรกรรม เช่น การปลูกข้าว ซึ่งมีการสำรวจ ศึกษาสภาพแวดล้อมและสภาพอากาศ และสร้างแบบจำลอง เพื่อมุ่งเน้นการปลูกข้าวอย่างมีประสิทธิภาพ เพิ่มผลผลิตให้แก่เกษตรกรและลดผลกระทบจากความเสียหายที่เกิดจากสภาพอากาศแปรปรวนที่ไม่อาจคาดเดาได้ สร้างเป็น Dashboard การตัดสินใจปลูกข้าวในพื้นที่นาน้ำฝนของภาคอีสานโดยใช้ปริมาณน้ำฝนสะสมล่วงหน้าดังรูปที่ 1 และ 2 2. อุตุนิยมวิทยาเพื่อการท่องเที่ยว           การเปลี่ยนแปลงสภาพอากาศส่งผลต่อการใช้ชีวิตประจำวันของคนเราโดยเฉพาะในเรื่องของการเดินทาง การติดตามสภาพอากาศเพื่อการท่องเที่ยวถือเป็นประเด็นสำคัญที่เราสนใจในการนำข้อมูลทางอุตุนิยมวิทยามาประยุกต์เพื่อแนะนำการท่องเที่ยว โดยแบ่งตามช่วงเวลาที่สนใจ แดชบอร์ดแสดงข้อมูลการคาดการณ์วันที่เหมาะสมสำหรับการเดินป่า การไปเที่ยวชายหาด การไปเที่ยวทะเล และกิจกรรมอื่น ๆ โดยมีตัวกรองให้สามารถเลือกแสดงผลเดือนที่สนใจได้ โดยใช้ความสามารถของกรมอุตุนิยมวิทยาที่สามารถพยากรณ์อากาศ เพื่อประกอบการตัดสินใจเลือกท่องเที่ยวในรูปแบบต่าง ๆ ตามลักษณะอากาศที่เหมาะสมในการท่องเที่ยว ซึ่งแบ่งเป็น 4 ประเภท ดังนี้ นอกจากนี้ยังมีการแสดงปฏิทินที่แสดงความเหมาะสมสำหรับการท่องเที่ยวตลอดทั้งปี โดยแยกเป็น สามารถดูตัวอย่างประกอบได้ที่ Dashboard 3. การพยากรณ์อากาศเพื่อการเดินเรือ การพยากรณ์อากาศเพื่อการเดินเรือ อาศัยข้อมูลจาก 2 แบบจำลอง คือ ข้อมูลจำแนกตามท่าเรือต่าง ๆ โดยข้อมูลที่แสดงใน Dashboard ได้แก่ พิกัดท่าเรือ ปริมาณน้ำฝน ความสูงคลื่น คาบคลื่นเฉลี่ย ทิศทางคลื่น ทิศทางลม และความเร็วลม โดยข้อมูลต่าง ๆ เหล่านี้ ถูกนำมาใช้เพื่อประกอบการตัดสินใจในการเดินเรือ เหล่านี้เป็นเพียงตัวอย่างการประยุกต์ใช้ข้อมูลทางอุตุนิยมวิทยาในส่วนของคำแนะนำของการปลูกข้าวในพื้นที่นาน้ำฝน คำแนะนำในการวางแผนการท่องเที่ยว และการตัดสินใจเดินเรือในเบื้องต้นเท่านั้น ในระยะถัดไปอาจมีการนำข้อมูลจากแบบจำลองอื่น ๆ หรือข้อมูลเพิ่มเติมมาประยุกต์ใช้เพื่อเป็นประโยชน์ต่อการดำเนินชีวิตของเราทุกคนต่อไป Reference Dashboard การเกษตร Dashboard การท่องเที่ยว Dashboard การเดินเรือ เนื้อหาโดย ขวัญศิริ ศิริมังคลาตรวจทานและปรับปรุงโดย 
14 December 2022
PDPA Icon

We use cookies to optimize your browsing experience and improve our website’s performance. Learn more at our Privacy Policy and adjust your cookie settings at Settings

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as needed, except for necessary cookies.

Accept all
Manage Consent Preferences
  • Strictly Necessary Cookies
    Always Active

    This type of cookie is essential for providing services on the website of the Personal Data Protection Committee Office, allowing you to access various parts of the site. It also helps remember information you have previously provided through the website. Disabling this type of cookie will result in your inability to use key services of the Personal Data Protection Committee Office that require cookies to function.
    Cookies Details

  • Performance Cookies

    This type of cookie helps the Big Data Institute (Public Organization) understand user interactions with its website services, including which pages or areas of the site are most popular, as well as analyze other related data. The Big Data Institute (Public Organization) also uses this information to improve website performance and gain a better understanding of user behavior. Although the data collected by these cookies is non-identifiable and used solely for statistical analysis, disabling them will prevent the Big Data Institute (Public Organization) from knowing the number of website visitors and from evaluating the quality of its services.

  • Functional Cookies

    This type of cookie enables the Big Data Institute (Public Organization)’s website to remember the choices you have made and deliver enhanced features and content tailored to your usage. For example, it can remember your username or changes you have made to font sizes or other customizable settings on the page. Disabling these cookies may result in the website not functioning properly.

  • Targeting Cookies

    "This type of cookie helps the Big Data Institute (Public Organization) understand user interactions with its website services, including which pages or areas of the site are most popular, as well as analyze other related data. The Big Data Institute (Public Organization) also uses this information to improve website performance and gain a better understanding of user behavior. Although the data collected by these cookies is non-identifiable and used solely for statistical analysis, disabling them will prevent the Big Data Institute (Public Organization) from knowing the number of website visitors and from evaluating the quality of its services.

Save settings