Data Visualization

Data Visualization

ข่าวและบทความที่เกี่ยวข้อง

All Data Visualization

PostType Filter En

บทความ

Data Visualization ช่วยเราเข้าใจแผ่นดินไหวได้อย่างไร
แผ่นดินไหวเป็นภัยธรรมชาติที่สร้างความเสียหายมหาศาลต่อชีวิตและทรัพย์สิน การเข้าใจรูปแบบการเกิดแผ่นดินไหวผ่านการวิเคราะห์ข้อมูลและการแสดงผลข้อมูลเชิงภาพ (Data Visualization) จึงมีบทบาทสำคัญอย่างยิ่งในการเตรียมพร้อมรับมือและลดผลกระทบจากภัยพิบัติดังกล่าว บทความนี้นำเสนอวิธีการใช้ Data Visualization เพื่อทำความเข้าใจแผ่นดินไหวในมิติต่าง ๆ ความสำคัญของ Data Visualization ในการศึกษาแผ่นดินไหว การแสดงผลข้อมูลเชิงภาพช่วยให้เราสามารถเห็นรูปแบบและความสัมพันธ์ของข้อมูลที่ซับซ้อนได้อย่างชัดเจน สำหรับปรากฏการณ์แผ่นดินไหว การใช้ Data Visualization มีประโยชน์หลายประการ ดังนี้ การติดตามแผ่นดินไหว ณ เวลาปัจจุบัน (Real-time earthquake monitoring) ปัจจุบันมีระบบติดตามแผ่นดินไหวแบบเรียลไทม์หลายระบบ เช่น USGS Earthquake Map ที่จัดทำโดยสำนักงานธรณีวิทยาแห่งสหรัฐอเมริกา (USGS) โดยสามารถแสดงข้อมูลแผ่นดินไหวทั่วโลกแบบเรียลไทม์ (ภาพที่ 1) แสดงแผนที่ตำแหน่งการเกิดเหตุแผ่นดินไหวที่เกิดขึ้นล่าสุด เพื่อให้สามารถเข้าใจได้โดยง่าย แผนที่การเกิดแผ่นดินไหวจึงมักอยู่ในรูปแบบพื้นฐานที่ใช้แสดงตำแหน่งของแผ่นดินไหว โดยนิยมใช้จุด (Points) ที่มีขนาดและสีแตกต่างกันเพื่อแสดงความรุนแรงของแผ่นดินไหว การประยุกต์ใช้ Data Visualization ในการศึกษาแผ่นดินไหวมีความท้าทายสำคัญประการแรกคือการจัดการกับข้อมูลขนาดใหญ่ที่ไหลมาจากเครือข่ายเซนเซอร์จำนวนมาก ซึ่งจำเป็นต้องพัฒนาระบบการประมวลผลและแสดงผลแบบเรียลไทม์เพื่อให้ข้อมูลล่าสุดพร้อมใช้งานสำหรับการวิเคราะห์และติดตามสถานการณ์ นอกจากนี้ การออกแบบ Visualization ที่ซับซ้อนให้เข้าใจง่ายสำหรับประชาชนทั่วไปยังเป็นอีกความท้าทาย เพื่อให้การสื่อสารความเสี่ยงและการเตรียมพร้อมรับมือภัยพิบัติเป็นไปอย่างมีประสิทธิภาพ ปัจจุบัน สถาบันข้อมูลขนาดใหญ่ (องค์การมหาชน) ได้มีการจัดทำแดชบอร์ดติดตามสถานการณ์การเกิดแผ่นดินไหวในประเทศไทยและประเทศข้างเคียง (ภาพที่ 2) ซึ่งสามารถติดตามการกระจายตัว ขนาด ความถี่ รวมถึงแนวโน้มเชิงเวลาของ aftershocks ที่ปกติจะมีการเกิดขึ้นตามมาหลังจากการเกิดแผ่นดินไหวลูกใหญ่ (mainshock) ซึ่งโดยปกติจำนวน ขนาด และความถี่ของ aftershocks จะลดลงตามเวลาที่ผ่านไปหลังจากการเกิด mainshock ตามที่แสดงในภาพที่ 3 Data Visualization จึงเป็นเครื่องมือสำคัญในการทำความเข้าใจปรากฏการณ์แผ่นดินไหว การพัฒนาเทคนิคการแสดงผลข้อมูลที่มีประสิทธิภาพจะช่วยให้ประชาชนทั่วไปเข้าใจความเสี่ยงและเตรียมพร้อมรับมือกับแผ่นดินไหวได้ดียิ่งขึ้น ซึ่งในที่สุดจะช่วยลดความสูญเสียต่อชีวิตและทรัพย์สินจากภัยพิบัติทางธรรมชาติชนิดนี้ เอกสารอ้างอิง
28 April 2025

บทความ

ประโยชน์ของ Power BI ที่มีต่อธุรกิจในยุคปัจจุบัน
Power BI คือ เครื่องมือวิเคราะห์ข้อมูลจาก Microsoft ที่เปลี่ยนข้อมูลดิบให้กลายเป็นข้อมูลเชิงลึกที่มีความหมาย เพื่อใช้ในการวิเคราะห์แนวโน้มและผลลัพธ์ที่อาจเกิดขึ้นในอนาคต เป็นหนึ่งในเครื่องมือ Business Intelligence (BI) ที่นิยมในปัจจุบัน เพราะช่วยให้สามารถวิเคราะห์ข้อมูลได้ง่ายขึ้น มีจุดเด่นที่ความสามารถในการเชื่อมต่อข้อมูลจากหลายแหล่ง การสร้างแดชบอร์ดแบบอินเทอร์แอคทีฟ และการใช้งานที่ไม่ซับซ้อน  ในบทความนี้จะนำทุกท่านไปรู้จักกับ Power BI เครื่องมือที่สามารถช่วยในการตัดสินใจที่ชาญฉลาดและรวดเร็วขึ้น ขยายขอบเขตของการวิเคราะห์ข้อมูลและการรายงาน ทำให้สามารถมองเห็นภาพรวมของธุรกิจได้อย่างละเอียดและชัดเจน องค์ประกอบของ Power BI  Power BI ไม่ใช่แค่รวบรวมและวิเคราะห์ข้อมูลเท่านั้น แต่ยังช่วยแสดงข้อมูลในรูปแบบที่เข้าใจง่าย สวยงาม และมีประสิทธิภาพ ทำให้เห็นภาพรวมของธุรกิจอย่างชัดเจน ทำให้สามารถวางแผนล่วงหน้าได้อย่างมั่นใจ ซึ่งมีองค์ประกอบหลักที่ช่วยให้การทำงานดำเนินไปได้อย่างง่ายดายดังนี้ 1. Power BI Desktop คือซอฟต์แวร์ Power BI บนคอมพิวเตอร์ที่สามารถเชื่อมข้อมูลจากแหล่งข้อมูลต่าง ๆ เพื่อนำข้อมูลมาวิเคราะห์ แปลงข้อมูล แล้วนำผลลัพธ์ที่ได้มาแสดงผลบนแดชบอร์ด 2. Power BI Service เป็นบริการที่อยู่บนคลาวด์ (Cloud) ทำหน้าที่เป็นศูนย์กลางในการเผยแพร่ แบ่งปัน และเข้าถึงรายงานและแดชบอร์ดที่สร้างขึ้นด้วย Power BI Desktop สามารถแชร์รายงานและแดชบอร์ดให้กับบุคลากรทั้งภายในและภายนอกองค์กร 3. Power BI Mobile เป็นแอปพลิเคชั่น Power BI ที่ทำให้ผู้ใช้สามารถดูข้อมูลการวิเคราะห์บนโทรศัพท์ได้ และจะมีการแจ้งเตือนผู้ใช้แบบ Realtime หากมีการเปลี่ยนแปลงเกิดขึ้น 4. Power BI Gateway เป็นเครื่องมือที่เชื่อมระหว่าง Power BI Service กับแหล่งข้อมูล (Data Sources) ขององค์กร เพื่อให้ผู้ใช้เข้าถึงข้อมูล และนำไปสร้างรายงานกับแดชบอร์ดได้ โดยไม่ต้องย้ายข้อมูลไปอยู่บน Cloud 5. Power BI Embedded เป็นบริการที่ช่วยให้นักพัฒนาซอฟต์แวร์สามารถเชื่อมต่อรายงานและแดชบอร์ดจาก Power BI ไปฝังในแอปพลิเคชั่นขององค์กรได้เลย โดยไม่ต้องเขียนโค้ดส่วนควบคุมและแสดงผลเพิ่มเติม 6. Power BI Report Builder เป็นเครื่องมือในการสร้างและออกแบบรายงานที่มีการแบ่งหน้า Paginated Reports ซึ่งเป็นรายงานที่ผู้ใช้สามารถจัดวางข้อมูล และต้องการพิมพ์เป็นเอกสารออกมา เพื่อให้การตรวจสอบและวิเคราะห์ทำได้ง่ายขึ้น Power BI มีประโยชน์ต่อธุรกิจอย่างไร Power BI เป็นเครื่องมือที่ช่วยให้ธุรกิจสามารถวิเคราะห์ข้อมูลได้อย่างแม่นยำและรวดเร็ว ซึ่งมีประโยชน์อย่างมากต่อธุรกิจในยุคปัจจุบัน ไม่ว่าจะเป็นการวิเคราะห์ข้อมูลการขาย การวิเคราะห์ความพึงพอใจของลูกค้า หรือการติดตามความก้าวหน้าของโครงการ โดยการนำ Power BI เข้ามาใช้จะทำให้องค์กรได้ประโยชน์ 5 ข้อดังนี้ 1. สามารถใช้ร่วมกับซอฟต์แวร์ตัวอื่นของ Microsoft ได้ Power BI เป็นซอฟต์แวร์ของ Microsoft ทำให้ผู้ใช้สามารถใช้ Power BI ร่วมกับซอฟต์แวร์ตัวอื่นได้ ยกตัวอย่างเช่น  2. เป็นซอฟต์แวร์ที่ใช้งานง่าย Power BI ถูกพัฒนาขึ้นให้มี UI ที่ใช้งานง่ายในทุกขั้นตอน เริ่มจากการเชื่อมต่อ Power BI รองรับการเชื่อมต่อกับฐานข้อมูลหลายประเภท เช่น Microsoft Excel, SQL Server และ Google Analytics หลังจากเชื่อมต่อแล้ว ผู้ใช้ก็สามารถสร้างรายงานและแดชบอร์ดได้เลย เพียงนำข้อมูลมาวาง Power BI จะนำข้อมูลไปสร้างเป็นกราฟและแผนภูมิให้เองโดยอัตโนมัติ ในส่วนของการแสดงผล Power BI ยังมีเทมเพลตสำเร็จรูปที่ผู้ใช้สามารถปรับแต่งสี กราฟ และเลย์เอาต์ได้อิสระ นอกจากนี้ยังเลือกอุปกรณ์ที่จะนำรายงานขึ้นไปแสดงผลได้ ทั้งโทรศัพท์ แท็บเล็ต และคอมพิวเตอร์ เพื่อให้การแสดงผลเหมาะกับอุปกรณ์แต่ละประเภท 3. สามารถประมวลผลข้อมูลได้แบบ Real time ข้อมูลที่แสดงผลอยู่บนแดชบอร์ดสามารถอัปเดตได้ตามเวลาที่ต้องการ เหมาะสำหรับข้อมูลที่มีการอัพเดตอยู่เสมอ ซึ่ง Power BI มีตัวเลือกให้ผู้ใช้สามารถอัปเดตข้อมูลแบบ Real time ได้ถึง 3 วิธีด้วยกัน ดังนี้ 4. ลดต้นทุนในการวิเคราะห์ข้อมูล Power BI เป็นซอฟต์แวร์ที่ Microsoft พัฒนาขึ้นมาให้ผู้ใช้งานในองค์กรทุกระดับ หากผู้ใช้เป็นลูกค้า Microsoft Enterprise Agreement อยู่แล้ว ก็สามารถใช้งาน Power BI ได้ฟรี แต่ถ้ายังไม่เคยใช้งาน Power BI จะมีซอฟต์แวร์ให้เลือก 3 แพ็คเกจ ดังนี้ 5. พนักงานทำงานร่วมกันง่ายขึ้น Power BI ช่วยให้บุคลากรทำงานร่วมกันง่ายขึ้น เพราะสามารถทำงานพร้อมกัน ทั้งการดูและแก้ไขรายงานได้แบบ Real time ผ่าน Power BI Service จากนั้นเมื่อทำเสร็จแล้ว ผู้ใช้ก็สามารถแชร์ข้อมูลในฟอร์แมตต่าง ๆ เพื่อนำไปใช้งานต่อได้ ไม่ว่าจะเป็นการแชร์เป็นไฟล์ PDF, Excel, Word หรือ PowerPoint  นอกจากนี้ Power BI ยังเป็นซอฟต์แวร์ที่สามารถนำไปใช้งานได้ในการดำเนินธุรกิจหลายด้าน ดังนี้ เจ้าของธุรกิจสามารถนำ Power BI ไปใช้ เพื่อดูข้อมูลแบบ Real time ด้านประสิทธิภาพการขาย การดำเนินการ และการเติบโตของรายได้ หรือในด้านการวางแผน การนำ Power BI มาใช้จะช่วยให้เจ้าของธุรกิจวิเคราะห์ข้อมูลการขายสินค้าในอดีตของพื้นที่ดังกล่าวว่าเป็นอย่างไร เพื่อนำมาวางแผนการตลาดในอนาคต ฝ่ายการตลาดสามารถนำ Power BI ไปใช้ เพื่อติดตาม KPI ต่าง ๆ ว่ามียอดเป็นอย่างไร เช่น ยอด Click-Through Rates, Conversion Rate บนเว็บไซต์ แล้วนำข้อมูลมาวิเคราะห์ว่ามียอดตามที่คาดหวังหรือไม่ เพื่อพัฒนาเว็บไซต์และคอนเทนต์ต่อ หรือจะเป็นการนำมาใช้สำหรับวิเคราะห์โซเชียลมีเดีย อย่างการให้ Power BI ติดตามยอด Like ยอด Share และ Comment ของโพสต์บนโซเชียลมีเดียขององค์กรว่ามีจำนวนมากแค่ไหน การใช้ Power BI ช่วยให้ฝ่ายขายสามารถสร้างแดชบอร์ดเพื่อติดตาม Sales Metrics เช่น รายได้รวม กำไรสุทธิ และอัตราการปิดยอดขาย ของพนักงานเป็นรายบุคคลและยอดของทีมโดยรวม นอกจากนี้ยังสามารถใช้ Power BI มาวิเคราะห์ข้อมูลดังกล่าว เพื่อคาดการณ์ยอดขายที่อาจจะเกิดขึ้นในอนาคตตามระยะเวลาที่กำหนด ช่วยให้ทีมนำข้อมูลมาตั้งเป้าหมายที่คาดว่าจะทำได้จริงมากที่สุด...
25 February 2025

บทความ

Data Visualization คืออะไร มีประโยชน์ และใช้งานอย่างไร ?
Data Visualization คือ การแสดงข้อมูลที่ผ่านการวิเคราะห์และประมวลผลในรูปแบบที่เข้าใจง่ายและสื่อสารได้ชัดเจน เช่น แผนภูมิ แผนที่ อินโฟกราฟิก หรือรูปภาพ การนำเสนอเหล่านี้ช่วยให้ผู้ใช้งานสามารถมองเห็นแนวโน้ม รูปแบบ และข้อมูลเชิงลึกได้อย่างรวดเร็ว องค์กรจึงสามารถนำข้อมูลไปใช้ในการตัดสินใจที่แม่นยำและมีประสิทธิภาพมากขึ้น เนื่องจากทุกองค์กรมีข้อมูลสำคัญและมีความซับซ้อน ซึ่งข้อมูลปริมาณมากอาจทำให้การวิเคราะห์เกิดความผิดพลาดได้ ด้วยเหตุผลนี้ทำให้องค์กรต้องมีการทำ Data Visualization เพื่อช่วยให้ผู้ใช้งานมองเห็นภาพรวมได้ชัดเจน มีส่วนช่วยในการตัดสินใจทั้งในด้านการบริหารและการวางแผนธุรกิจ โดยการทำ Data Visualization นั้น มีรูปแบบการแสดงผลหลายประเภทด้วยกัน ซึ่งมี 5 รูปแบบที่เป็นที่นิยมนำมาใช้ในการทำงาน คือ ประโยชน์ของ Data Visualization  นอกจากการทำ Data Visualization จะช่วยให้องค์กรเห็นข้อมูลเชิงลึกที่ได้จากการสรุปข้อมูลออกมาแล้ว ยังช่วยให้องค์กรได้ประโยชน์ 5 ข้อดังต่อไปนี้ 1. ทำให้ข้อมูลที่มีความชัดเจนและเข้าใจง่าย การทำ Data Visualization ช่วยพนักงานที่มีความรู้ในระดับที่ต่างกันสามารถเข้าใจข้อมูลชุดเดียวกันได้ นอกจากนี้ยังช่วยเน้นข้อมูลสำคัญ แสดงให้เห็นถึงความสัมพันธ์ของข้อมูล และแนวโน้มของการทำธุรกิจ ที่อาจสังเกตเห็นได้ยากหากดูจากข้อมูลดิบโดยตรง 2. ทำให้ข้อมูลมีความน่าสนใจมากขึ้น การดูข้อมูลดิบที่มีเฉพาะตัวเลขกับตัวอักษรส่งผลให้การดูมีความลำบากจนทำให้เกิดความสับสน แต่การทำ Data Visualization คือการนำข้อมูลมาสร้างเป็น Visual Content ที่มีการใช้ภาพ สี และรูปทรงมาแสดงผล ช่วยให้พนักงานเข้ามามีส่วนร่วมกับข้อมูลได้ง่าย ผ่านการจดจำข้อมูลเป็นภาพ ซึ่งง่ายกว่าการจำเป็นตัวอักษร 3. ช่วยให้บุคลากรตัดสินใจร่วมกันง่ายขึ้น แต่ละทีมย่อมมีวิธีการนำเสนอข้อมูลที่ต่างกัน ทำให้มีแค่พนักงานที่เกี่ยวข้องที่รู้วิธีการตีความข้อมูล การทำ Data Visualization จึงเป็นเหมือนสื่อกลางที่จะเข้ามาช่วยให้แต่ละทีมสามารถนำรายละเอียดที่มีความซับซ้อนมานำเสนอในรูปแบบที่เข้าใจง่ายและชัดเจนเหมือนกัน ช่วยให้บุคลากรทีมอื่นที่ไม่มีความรู้พื้นฐาน สามารถเข้าใจข้อมูลชุดเดียวกันและนำไปใช้งานต่อได้ เช่น ทีมการตลาดสามารถดูกราฟยอดขายเพื่อนำมาข้อมูลมาวางแผนการตลาดให้สอดคล้องกับสถานการณ์ปัจจุบัน 4. ช่วยให้การตัดสินใจทำได้เร็วขึ้น องค์กรสามารถเห็นรายละเอียดของข้อมูลที่ต้องการได้แบบ Real time ผ่านการนำข้อมูลมาแสดงผลบน Interactive Dashboard ที่จะช่วยให้องค์กรเห็นข้อมูลหลายชุดพร้อมกัน และสามารถนำข้อมูลไปใช้ในการตัดสินใจได้เร็วขึ้น โดยไม่ต้องรอให้นักวิเคราะห์ข้อมูลมาสร้างรายงานให้ตลอด 5. ช่วยตรวจจับความผิดปกติและข้อผิดพลาด อย่างที่กล่าวถึงว่าองค์กรมีการเก็บข้อมูลปริมาณมากเอาไว้ การสังเกตความผิดปกติโดยตรงจึงเป็นเรื่องที่ทำได้ยาก แต่การนำข้อมูลมาสรุปในรูปแบบกราฟหรือแผนภูมิ จะทำให้เห็นภาพรวมอย่างชัดเจน ถ้าข้อมูลมีความผิดปกติ เช่น มีค่าที่สูงหรือต่ำเกินไป ก็จะช่วยให้องค์กรสามารถดำเนินการแก้ไขได้อย่างรวดเร็วและมีประสิทธิภาพมากขึ้น ขั้นตอนการใช้งาน Data Visualization  การทำ Data Visualization มีขั้นตอนการใช้งาน 5 ข้อดังนี้ การที่เรารู้ก่อนว่าอยากสื่อสารข้อมูลอะไรออกไปจะช่วยเพิ่มคุณภาพของการทำ Data Visualization ให้มีมากขึ้น เพราะข้อมูลที่อยากสื่อสารออกไปจะช่วยให้องค์กรสามารถเลือกรูปแบบการนำเสนอได้เหมาะสมกับปริมาณข้อมูล การรู้ว่าผู้รับสารเป็นใครจะช่วยให้เราเลือกรูปแบบของการแสดงข้อมูลได้ถูก เช่น ผู้บริหาร ลูกค้า หรือทีมงานด้วยกัน ซึ่งนอกจากการรู้จักผู้รับสารในเบื้องต้น ผู้ออกแบบก็ควรจะรู้ข้อมูลเพิ่มเติมดังต่อไปนี้เพื่อนำมาทำ Data Visualization ได้ถูกต้อง อาทิ ต่อมาคือการเลือกรูปแบบการนำเสนอว่าข้อมูลที่เราต้องการสื่อสารเหมาะสมกับการนำเสนอแบบไหน เพราะการนำเสนอแต่ละรูปแบบมีความเหมาะสมกับข้อมูลที่ต่างกัน การเลือกใช้รูปแบบที่เหมาะสมกับข้อมูลของเราจะช่วยให้กลุ่มเป้าหมายเข้าใจข้อมูลได้ง่ายขึ้น ดังนี้ หลังจากที่เราเลือกรูปแบบได้แล้ว ก็มาถึงการออกแบบที่นอกจากตัวข้อมูลจะต้องมีความถูกต้อง เราจะต้องวางตำแหน่งชื่อข้อมูลและรายละเอียดให้ครบ เพื่อให้ผู้อ่านรู้ว่ากำลังดูข้อมูลอะไร และที่ขาดไม่ได้คือการเลือกใช้สีให้เข้ากับรูปแบบข้อมูลแต่ละส่วน ก็จะช่วยให้ผู้อ่านเข้าใจความหมายที่ต้องการสื่อได้ง่าย มาถึงขั้นตอนสุดท้ายที่เราจะต้องเลือกซอฟต์แวร์มาแสดงข้อมูล ซึ่งในตลาดมีซอฟต์แวร์ให้เลือกจำนวนมาก ยกตัวอย่างซอฟต์แวร์ที่ได้รับความนิยม 5 ตัวดังต่อไปนี้ เพราะฉะนั้น การทำ Data Visualization จึงไม่ใช่การนำข้อมูลมาออกแบบให้มีความน่าสนใจอย่างเดียว แต่เป็นการนำข้อมูลที่มีความซับซ้อน มาสรุปให้เหลือเฉพาะรายละเอียดสำคัญที่จะช่วยให้เข้าใจข้อมูลได้ง่ายภายในเวลาสั้น ๆ ผ่านการแสดงผลในรูปแบบต่าง ๆ เพื่อให้นำผลลัพธ์ไปใช้ประโยชน์ในการดำเนินธุรกิจต่อได้ทันที สำหรับผู้ที่สนใจการทำ Data Visualization สามารถดูข้อมูลเพิ่มเติม ได้ที่ : https://bdi.or.th/big-data-101/picking-chart-for-data-visualization/ แหล่งอ้างอิง
25 February 2025

บทความ

Pandas vs. PySpark เลือกเครื่องมือที่ใช่ให้เหมาะกับงานข้อมูลของคุณ?
Pandas และ PySpark เป็นเครื่องมือที่ใช้สำหรับการจัดการและวิเคราะห์ข้อมูลใน Python โดย Pandas เป็นไลบรารียอดนิยมที่ใช้สำหรับการทำงานกับชุดข้อมูลขนาดเล็ก ถึงขนาดกลาง ในหน่วยความจำบนเครื่องเดียว (single-node) ซึ่งมีฟังก์ชันหลากหลายสำหรับการจัดการและวิเคราะห์ข้อมูล ในทางตรงกันข้าม PySpark ซึ่งสร้างขึ้นบน Apache Spark ได้รับการออกแบบมาเพื่อการประมวลผลแบบกระจาย (distributed computing) ทำให้สามารถประมวลผลชุดข้อมูลขนาดใหญ่ได้บนหลายเครื่องใน cluster เดียว Pandas คืออะไร Pandas เป็นหนึ่งใน library แบบ open-source ที่ถูกใช้งานมากที่สุดใน Python สำหรับข้อมูลที่มีโครงสร้างแบบตารางเพื่อการวิเคราะห์ข้อมูลได้หลากหลาย เช่น การกรองข้อมูล การรวมข้อมูล การแปลงข้อมูล รวมถึงการทำความสะอาดและเตรียมข้อมูล จนไปถึงการทำ Machine Learning และอื่น ๆ อีกมากมาย โดยสามารถอ่านไฟล์ได้ในหลายรูปแบบ เช่น CSV, JSON, SQL และรูปแบบอื่นๆ จากนั้นจะสร้างข้อมูลในรูปแบบ DataFrame ซึ่งเป็นวัตถุที่มีโครงสร้างประกอบด้วยแถวและคอลัมน์ (คล้ายกับตาราง SQL) ตัวอย่างการใช้งาน Pandas DataFrame เริ่มต้นใช้งาน Pandas library โดยการ import library และสร้าง DataFrame ด้วยฟังก์ชัน pd.DataFrame โดยได้ผลลัพธ์ออกมาเป็นตารางที่มี index เริ่มที่ index 0 ตัวอย่าง Pandas Transformations ฟังก์ชันต่าง ๆ ในกระบวนการแปลงของ Pandas DataFrame ซึ่งรวมถึงฟังก์ชันทางคณิตศาสตร์ หรือฟังก์ชันทางสถิติ ที่สามารถเลือกทำได้ในทั้ง DataFrame หรือเลือกทำในแต่ละ column เป็นตัวช่วยให้จัดการและวิเคราะห์ข้อมูลยืดหยุ่นมากขึ้น ตัวอย่างเช่น PySpark คืออะไร PySpark เป็น API ของ Python สำหรับ Apache Spark ซึ่งเป็นกรอบการประมวลผลแบบกระจาย (distributed computing) ที่ออกแบบมาสำหรับการประมวลผลชุดข้อมูลขนาดใหญ่ใน cluster ของเครื่องคอมพิวเตอร์ โดยที่ PySpark ช่วยให้การประมวลผลและวิเคราะห์ข้อมูลแบบขนานเป็นไปได้โดยการกระจายการคำนวณไปยังหลาย node ใน cluster ซึ่งทำให้มีความสามารถในการขยายขนาด (scalability) และมีประสิทธิภาพสูงสำหรับงานวิเคราะห์ข้อมูลขนาดใหญ่ ซึ่ง PySpark มี API DataFrame ที่มีลักษณะคล้ายกับ Pandas ทำให้ผู้ใช้งานสามารถทำการจัดการข้อมูลได้คล้ายกัน แต่บนชุดข้อมูลที่กระจายกันอยู่ (Distributed Datasets) ตัวอย่างการใช้งาน PySpark DataFrame PySpark DataFrame เป็นวัตถุที่ไม่สามารถเปลี่ยนแปลงค่าได้ (immutable) ซึ่งหมายความว่าไม่สามารถเปลี่ยนแปลงได้เมื่อสร้างขึ้นแล้ว มีความสามารถในการทนต่อข้อผิดพลาด (fault-tolerant) และการทำ Transformations จะเป็น Lazy evaluation ซึ่งหมายความว่าจะไม่ถูกดำเนินการจนกว่าจะมีการเรียกใช้ Actions เช่น count(), collect(), show() เป็นต้น ซึ่ง PySpark DataFrames จะถูกกระจายอยู่ใน cluster (ซึ่งหมายถึงข้อมูลใน PySpark DataFrames จะถูกจัดเก็บในเครื่องคอมพิวเตอร์ต่าง ๆ ใน cluster เดียว) และการดำเนินการใด ๆ ใน PySpark จะถูกดำเนินการแบบขนานบนเครื่องทั้งหมดใน cluster เริ่มต้นโดยการ import และสร้าง SparkSession และสร้าง DataFrame ด้วย spark.createDataFrame  โดยได้ผลลัพธ์ออกมาเป็นตารางที่ไม่มี index และเมื่อต้องการแสดงตาราง ให้ใช้ฟังก์ชัน show() และสามารถอ่านไฟล์ได้ เช่น การอ่าน csv file ด้วยฟังก์ชัน spark.read.csv ตัวอย่าง PySpark Transformations การทำ Transformations ใน PySpark มีลักษณะเป็นแบบ Lazy evaluation ซึ่งหมายความว่าจะไม่ถูกดำเนินการจนกว่าจะมีการเรียกใช้ Actions ตัวอย่างการแปลงใน PySpark มีดังนี้ ตัวอย่างการใช้งาน PySpark SQL PySpark รองรับการใช้คำสั่ง SQL เพื่อดำเนินการแปลงข้อมูล (Transformation) ซึ่งที่ต้องทำคือการสร้างตาราง (Table) หรือมุมมอง (View) จาก PySpark DataFrame ตัวอย่าง Note !! วิธีการตัดสินใจเลือกระหว่างใช้ Pandas หรือ PySpark การตัดสินใจเลือกระหว่าง Pandas หรือ PySpark มีหลายองค์ประกอบในการตัดสินใจ ไม่ว่าจะเป็น ขนาดของข้อมูล ทรัพยากรในการประมวลผลที่มีอยู่ และความต้องการเฉพาะของงานวิเคราะห์ข้อมูล References บทความโดย ดร.ภิรมย์มาส เตชิตณัฏฐ์ศรุต ตรวจทานและปรับปรุงโดย ดร.ขวัญศิริ ศิริมังคลา
2 October 2024

บทความ

สร้างสีสันให้ Dashboard ด้วย Dynamic Icons ใน Power BI: เทคนิคง่าย ๆ ที่ทำให้ข้อมูลของคุณมีชีวิต
คุณเคยรู้สึกว่าการนำเสนอข้อมูลของคุณยังขาดความน่าสนใจหรือไม่ ลองนึกภาพดูว่าถ้าคุณสามารถเพิ่มชีวิตชีวาให้กับตัวเลขและกราฟของคุณด้วยไอคอนที่เปลี่ยนแปลงอย่างมีชีวิตชีวาตามข้อมูลจริง จะเป็นอย่างไร วันนี้เราจะมาเรียนรู้วิธีสร้าง Dynamic Icons ใน Power BI – เทคนิคที่จะทำให้ Dashboard ของคุณโดดเด่น สื่อสารข้อมูลได้อย่างมีประสิทธิภาพ และสร้างความประทับใจให้กับผู้ชมของคุณ บทความนี้จะอธิบายถึงการสร้างไอคอนที่มีการเปลี่ยนแปลงไปตามข้อมูลหรือ Dynamic icons ที่ใช้งานในโปรแกรม Power BI ตัวอย่างดังรูปที่ 1 เมื่อค่าผลรวมกำไรมีค่ามากกว่า 0 จะแสดงสัญลักษณ์ลูกศรชี้ขึ้นสีเขียว  แต่หากค่าผลรวมกำไรมีค่าน้อยกว่า 0 จะแสดงสัญลักษณ์ลูกศรชี้ลงสีแดง           การนำเสนอดังกล่าวแสดงผลผ่าน Card (new) โดยทำการเพิ่มรูปภาพร่วมกับการแสดงผลของค่า ซึ่งการแสดงของไอคอนนั้นจะต้องสร้างสูตร (Measure) เพื่อระบุเงื่อนไขในการแสดงผล โครงสร้างสูตรเบื้องต้นมีส่วนประกอบดังรูปที่ 2 ภายใน “” จะต้องนำโค้ดของการแปลงไอคอนให้อยู่ในรูป image base64 เรียบร้อยแล้ว           ก่อนอื่น เราสามารถค้นหาไอคอนที่ต้องการนำมาใช้งานได้จาก Flaticon ที่มีไอคอนฟรีมากมายให้เลือกใช้ โดยเลือกตัวเลือกการดาวน์โหลดเป็นไฟล์ PNG ขนาด 32px           จากนั้นนำภาพที่ได้ไปอัปโหลดและแปลงเป็นไฟล์ภาพ Base64 ที่ https://www.base64-image.de/           ให้ทำการกดปุ่ม copy image เพื่อนำโค้ดที่ได้ไปวางในสูตรที่เตรียมไว้ จะได้ผลลัพธ์ดังรูปที่ 5 สุดท้ายให้เปลี่ยน Data category ของสูตรเป็น Image URL ดังรูปที่ 6           สร้าง Card (new) โดยเลือกข้อมูลที่ต้องการแสดงผลมาใส่ ที่ Format visual ในเมนู Image เลือก Image type: Image URL ดังรูปที่ 7 จากนั้นคลิกที่ปุ่ม Conditional formatting จะปรากฏหน้าต่างดังรูปที่ 8 เลือกสูตรที่สร้างไว้มาใส่ กดปุ่ม OK           จะได้ผลลัพธ์เป็นค่าพร้อมด้วยไอคอนที่ปรับเปลี่ยนตามสูตรที่ต้องการแล้ว นอกจากนี้การแสดงผลสามารถเลือกเฉพาะ Dynamic icons โดยปิดการแสดงผล Values           การแสดงผลสภาพอากาศมักถูกแสดงด้วยไอคอนที่เกี่ยวกับเมฆและฝน ดังแสดงในรูปที่ 8 จะเป็นการแสดงผลสภาพอากาศ 7 วันด้วยการใช้ Dynamic icons ในกรณีที่มีการวิเคราะห์สถานการณ์เสี่ยงน้ำแล้งและน้ำท่วมสามารถแสดงผลความรุนแรงของความเสี่ยงด้วยสี อาจจะใช้เพียงจุดสีธรรมดาในการแสดงผล Dynamic Icons เป็นเครื่องมือที่มีประโยชน์สำหรับการสร้าง Visuals ที่น่าสนใจและเข้าใจง่ายใน Power BI ช่วยให้นักวิเคราะห์สื่อสารข้อมูลเชิงลึกแบบเรียลไทม์ เรายังมีเทคนิคอีกมากมายที่จะช่วยยกระดับการนำเสนอข้อมูลของคุณใน Power BI ให้น่าสนใจยิ่งขึ้น อย่าลืมติดตามบทความอื่น ๆ ของเราเพื่อเรียนรู้เทคนิคและเคล็ดลับใหม่ ๆ ที่จะช่วยให้คุณกลายเป็นผู้เชี่ยวชาญด้านการวิเคราะห์และนำเสนอข้อมูล เราพร้อมที่จะแบ่งปันความรู้และไอเดียสร้างสรรค์ใหม่ ๆ อยู่เสมอ มาร่วมเป็นส่วนหนึ่งในการพัฒนาทักษะการใช้ Power BI ไปด้วยกันนะคะ บทความโดย ขวัญศิริ ศิริมังคลาตรวจทานและปรับปรุงโดย นววิทย์ พงศ์อนันต์ อ้างอิง
30 July 2024

บทความ

การใช้เครื่องมือนำเสนอข้อมูล Python Visual บน Power BI Desktop
Power BI เป็นซอฟต์แวร์ของบริษัท Microsoft สำหรับใช้เป็นเครื่องมือในการจัดการและวิเคราะห์ข้อมูล โดยสามารถนำเสนอข้อมูล (Data Visualization) ได้ในรูปแบบของ Dashboard ในบทความนี้เราจะนำเสนอการใช้ซอฟต์แวร์ที่ชื่อ Power BI Desktop ซึ่งเป็นซอฟต์แวร์ในกลุ่มผลิตภัณฑ์ของ Power BI เป็นตัวอย่างในการอธิบายโดยใช้เครื่องมือนำเสนอข้อมูล (Visual Tool) ชื่อว่า Python Visual ซึ่งเป็น Visual ที่เกิดจากการสร้างชุดคำสั่ง (Script) ด้วยภาษาคอมพิวเตอร์ชื่อ Python รวมถึงการอธิบายสิ่งที่ผู้ใช้ควรรู้ก่อนการนำเครื่องมือตัวนี้ไปใช้ ในบทความฉบับนี้จะไม่ได้กล่าวถึงความรู้พื้นฐานในการสร้างชุดคำสั่งด้วยภาษา Python และการใช้งานเบื้องต้นของ Power BI Desktop ซึ่งผู้อ่านสามารถเรียนรู้เกี่ยวกับพื้นฐานเหล่านี้เพิ่มเติมได้ด้วยตนเอง ทั้งจากเอกสารอ้างอิงของบทความนี้และบทความอื่น ๆ ที่เกี่ยวข้อง ก่อนที่เราจะไปอธิบายการใช้เครื่องมือตัวนี้ ผู้เขียนขออธิบายก่อนว่าการใช้ชุดคำสั่งภาษา Python ใน Power BI Desktop สามารถทำได้หลักๆ 2 วิธี คือ โดยการใช้ชุดคำสั่งภาษา Python ทั้ง 2 วิธีนี้ ผู้ใช้งานจำเป็นต้องติดตั้ง Python และชุดคำสั่งสำเร็จรูป (Library) ที่เกี่ยวข้องบนเครื่องคอมพิวเตอร์ของตนเองก่อนที่จะนำชุดคำสั่งภาษา Python ไปใช้งานใน Power BI Desktop ขั้นตอนการใช้งาน Python Visual สิ่งที่ควรรู้ก่อนการใช้งานเครื่องมือ Python Visual         ถึงในจุดนี้ผู้อ่านคงจะเห็นแล้วว่าเครื่องมือ Python Visual เป็นเครื่องมือในซอฟต์แวร์ Power BI Desktop ที่มีประสิทธิภาพสูงและสามารถใช้งานได้โดยง่ายๆด้วยการเขียนชุดคำสั่งด้วยภาษา Python อย่างไรก็ดีผู้เขียนอยากอธิบายให้ผู้อ่านเข้าใจว่าตัวเครื่องมือดี ๆ เช่นนี้ ก็ยังมีข้อจำกัดบางอย่างที่ควรรู้ก่อนการนำไปใช้งาน เพื่อประโยชน์สูงสุดของตัวผู้ใช้เอง ซึ่งข้อจำกัดทั้งหมด ผู้ใช้สามารถศึกษาเพิ่มเติมได้จากบทความชื่อ สร้างวิชวล Power BI ด้วย Python โดยในบทความนี้ผู้เขียนจะขอสรุปแค่ส่วนสำคัญจากข้อจำกัดทั้งหมดที่ผู้ใช้ควรรู้ก่อนการนำเครื่องมือตัวนี้ไปใช้ ดังต่อไปนี้ ที่กล่าวมาทั้งหมด เป็นเพียงตัวอย่างส่วนหนึ่งของการใช้งานเครื่องมือ Python Visual บนซอฟต์แวร์ Power BI Desktop ผู้ใช้ยังสามารถสร้างการแสดงผลด้วยชุดคำสั่งอื่นๆในภาษา Python ด้วยเครื่องมือนี้ อย่างไรก็ดีผู้เขียนคิดว่าข้อควรรู้ก่อนการใช้งานเครื่องมือนี้ถือเป็นสิ่งที่สำคัญที่สุด เพราะหากผู้ใช้ไม่ศึกษาข้อจำกัดเหล่านี้ให้เข้าใจก่อนการใช้งาน ผู้ใช้มีความเสี่ยงที่จะพบปัญหาระหว่างการทำงานด้วยเครื่องมือ Python Visual ในภายหลังและอาจไม่สามารถแก้ไขปัญหานั้นได้โดยง่าย ซึ่งผู้เขียนหวังว่าบทความนี้จะเป็นประโยชน์ต่อ Data Scientist และ ผู้ใช้งาน Power BI Desktop ไม่มากก็น้อย บทความโดย ปฏิภาณ แสงเดือนตรวจทานและปรับปรุงโดย ปริสุทธิ์ จิตต์ภักดี เอกสารอ้างอิง
24 April 2024

บทความ

รู้จักกับแผนภูมิเรดาร์และวิธีการสร้างแผนภูมิเรดาร์ (Radar Chart) ในโปรแกรม Tableau
แผนภูมิเรดาร์ (Radar Chart) หรือแผนภูมิใยแมงมุม (Spider Chart) เป็นแผนภูมิสองมิติที่เรียบง่ายแต่เต็มเปี่ยมไปด้วยพลังแห่งการแสดงภาพข้อมูล (Data Visualization) มีลักษณะแกนพุ่งออกจากจุดศูนย์กลางคล้ายใยแมงมุม โดยแกนทั้งหมดมีการกระจายออกด้วยมุมที่เท่ากันและดึงออกจากกันอย่างสม่ำเสมอ แผนภูมิเรดาร์เหมาะสำหรับการนำเสนอข้อมูลหลากหลายตัวแปรตั้งแต่สามตัวแปรขึ้นไป โดยเฉพาะตัวแปรเชิงปริมาณ สามารถใช้เปรียบเทียบตัวชี้วัดต่าง ๆ เพื่อวิเคราะห์จุดแข็งและจุดอ่อนของสิ่งที่กำลังสนใจ ตัวอย่างเช่น การเปรียบเทียบความสามารถในการเขียนโปรแกรมด้วยภาษาต่าง ๆ ของพนักงาน             จากภาพตัวอย่าง สมมติว่าบริษัทหนึ่งกำลังจะมีการคัดเลือกพนักงาน เพื่อทำงานด้านการเขียนโปรแกรมด้วยภาษาไพธอน (Python) และภาษาอาร์ (R) บริษัทดังกล่าวสามารถวิเคราะห์ข้อมูลจากแผนภูมิเรดาร์ได้ว่า ควรจะเลือกพนักงาน A ในการรับผิดชอบงานชิ้นนี้ เนื่องจากพนักงาน A มีทักษะการใช้ทั้งภาษาไพธอนและภาษาอาร์ดีที่สุดเมื่อเทียบกับพนักงานคนอื่น ๆ นั่นเอง             จากตัวอย่างข้างต้น จะเห็นได้ว่าแผนภูมิเรดาร์มีประโยชน์ในการวิเคราะห์ข้อมูลได้อย่างรวดเร็วและมีประสิทธิภาพ ทั้งนี้การสร้างแผนภูมิเรดาร์มีขั้นตอนที่แตกต่างกันไปตามประเภทของโปรแกรมที่ใช้งาน เช่น ในโปรแกรม Excel หรือ Looker Studio มีขั้นตอนการสร้างที่ค่อนข้างง่ายและสะดวกรวดเร็ว ในขณะที่ในโปรแกรม Tableau อาจทำได้ยากกว่า และถึงแม้ว่าตัวโปรแกรม Tableau จะมีการออกแบบให้มีเมนูส่วนขยาย (Extension) เพื่อเพิ่มแผนภูมิ (Add-On Chart) โดยเฉพาะแผนภูมิเรดาร์ ในส่วนของการสร้างแดชบอร์ด แต่ก็ยังมีข้อจำกัดในเรื่องการใช้ชุดข้อมูลกับส่วนขยายดังกล่าว ในบทความนี้เราจะมาแนะนำวิธีการสร้างแผนภูมิเรดาร์ในโปรแกรม Tableau ตั้งแต่เริ่มต้น โดยข้อมูลตัวอย่างที่ถูกนำมาใช้สำหรับการสร้างแผนภูมิเรดาร์ในบทความนี้เป็นข้อมูลจำลอง (Mocked Data) ที่ผู้เขียนบทความสร้างขึ้นมาตามตารางด้านล่างนี้               การสร้างแผนภูมิเรดาร์ในโปรแกรม Tableau ประกอบด้วย 3 ขั้นตอนหลัก ได้แก่ การจัดการรูปแบบของข้อมูล, ขั้นตอนการสร้างแผนภูมิเรดาร์ และขั้นตอนการลดความยุ่งเยิงและการตกแต่งแผนภูมิเรดาร์ (Declutter and Decoration) มีรายละเอียดดังต่อไปนี้ 1.การจัดการรูปแบบของข้อมูล จากรูปแบบของข้อมูลจำลองข้างต้น จะเห็นได้ว่ารูปแบบดังกล่าวยังไม่สามารถที่จะนำเข้าโปรแกรม Tableau เพื่อสร้างแผนภูมิเรดาร์ได้ในทันที จำเป็นจะต้องมีการจัดรูปแบบใหม่เสียก่อน โดยรูปแบบข้อมูลที่สามารถนำไปใช้งานได้ ต้องเป็นข้อมูลที่อยู่ในรูปแบบรายการ (Transaction Data) ซึ่งสามารถจัดการได้โดยง่ายในโปรแกรม Tableau Desktop โดยเริ่มจาก 1.1 ดาวน์โหลดข้อมูลตัวอย่างจาก link จากนั้นเปิดโปรแกรม Tableau Desktop ขึ้นมา ที่แถบเครื่องมือหัวข้อ To File เลือก Microsoft Excel แล้วนำเข้าไฟล์ข้อมูลตัวอย่างที่ชื่อว่า “Radar data.xlsx”  เลือกชีท “programming skills” ลากวางดังภาพ 1.2 กดปุ่ม Ctrl ค้างไว้และเลือกฟิลด์ทักษะต่าง ๆ ประกอบด้วย Python, R, C, SQL, HTML และ JavaScript ซึ่งฟิลด์ที่ถูกเลือกนั้นจะถูกแสดงเป็นไฮไลท์ขึ้นมา จากนั้นคลิกปุ่มลูกศร (ของฟิลด์ใดฟิลด์หนึ่งที่ถูกไฮไลท์) และเลือกคำสั่ง Pivot 1.3 เปลี่ยนชื่อฟิลด์ จาก Pivot Field Names และ Pivot Field Values เป็น ภาษาโปรแกรมมิ่ง และ คะแนนทักษะ ตามลำดับ จะได้รูปแบบของข้อมูลที่พร้อมนำไปใช้สร้างแผนภูมิเรดาร์ 2. ขั้นตอนการสร้างแผนภูมิเรดาร์ 2.1 การสร้างสูตรฟิลด์คำนวณ หลักการสร้างสูตรมุม เริ่มจากมุมภายในวงกลมมีค่าเป็น 2*PI เมื่อถูกหารด้วยจำนวนของภาษาโปรแกรมมิ่ง ทำให้มุมภายในวงกลมนั้นถูกแบ่งออกเป็นจำนวน 6 มุม กางมุมละ PI/3 จากนั้นมีการหมุนปรับ (Rotation) มุมไป PI/2 เพื่อทำให้มีมุม 1 มุม ตั้งอิงอยู่บนแกน Y โดยสูตรการสร้างระยะห่างจากจุดศูนย์กลาง หรือรัศมี คำนวณจากผลรวมคะแนนทักษะ โดยสูตรการสร้างระยะแกน X คำนวณจากการแตกเวกเตอร์ของระยะห่างจากจุดศูนย์กลางบนแนวแกน X โดยสูตรการสร้างระยะแกน Y คำนวณจากการแตกเวกเตอร์ของระยะห่างจากจุดศูนย์กลางบนแนวแกน Y 2.2 การสร้างแผนภูมิเรดาร์ 3. ขั้นตอนการลดความยุ่งเหยิงและการตกแต่ง (Declutter and Decoration) แผนภูมิเรดาร์ 3.1 การลดความยุ่งเหยิง เพื่อที่จะลดความยุ่งเหยิงของแผนภูมิลง เราจะทำการซ่อนแกนที่แสดงตัวเลขบนแผนภูมิ โดยการคลิกขวาในแต่ละแกน เลือก Show Header เพื่อทำให้เครื่องหมายถูกข้างหน้าคำสั่งหายไป 3.2 การใส่รายละเอียดลงในกล่อง Tooltip (Tooltip คือกล่องข้อความที่จะแสดงรายละเอียดเมื่อนำเมาส์ไปวางค้างไว้) ทำการลากฟิลด์ ทักษะคะแนน ใส่กล่อง Tooltip ที่อยู่ในการ์ด Marks จากนั้นคลิกเข้าไปที่กล่อง Tooltip เพื่อจัดการข้อความภายในให้อยู่ในรูปแบบที่ต้องการ ตัวอย่างดังภาพ 3.3 การตกแต่งสีของแผนภูมิเรดาร์ สามารถปรับแต่งสีแผนภูมิโดยคลิกไปที่กล่อง Color ในการ์ด Marks คลิกเลือก Edit Color… จากนั้นปรับสีตามต้องการ หากต้องการปรับความโปร่งแสงของแผนภูมิ สามารถทำได้โดยเลื่อนมาตรวัดในส่วน Opacity 3.4 การเพิ่มภาพกรอบเรดาร์เป็นพื้นหลัง ที่เมนูบาร์ (Menu Bar) คลิกเมนู Map เลือกBackground Images แล้วเลือกชุดข้อมูล จากนั้นคลิกAdd Image… เลือกภาพพื้นหลังที่ต้องการ โดยในบทความนี้ เรามีการใช้กรอบเรดาร์หกเหลี่ยมด้านเท่าเป็นพื้นหลัง จากนั้นปรับค่าX Field หรือระยะรัศมีที่ไม่ได้ตั้งอยู่บนเส้นทแยงมุมของหกเหลี่ยม (r) ปรับค่าในส่วน Left และ Right เท่ากับ -8.66 และ 8.66 ตามลำดับ และกำหนดเครื่องหมายบวกหรือลบเป็นค่าตามแนวแกน X โดยค่าดังกล่าวคำนวณได้จากการแตกเวกเตอร์ตามแนวแกน X นั่นคือ 10 * COS(PI/6) และเช่นเดียวกันกับY Field หรือระยะรัศมีที่ตั้งอยู่บนเส้นทแยงมุมของหกเหลี่ยม (R)  ในส่วน Bottom และ Top เท่ากับ -10 และ 10 ตามลำดับ โดยค่าดังกล่าวเป็นค่าคะแนนเต็มของทักษะการเขียนโปรแกรม และกำหนดเครื่องหมายบวกหรือลบเป็นค่าตามแนวแกน Y 3.5 การติดป้ายกำกับข้อความ จะช่วยให้แผนภูมิเรดาร์แสดงรายละเอียดที่ชัดเจนยิ่งขึ้น การติดป้ายกำกับสามารถทำได้โดยการคลิกขวาที่แต่ละมุมของภาพพื้นหลัง แล้วเลือก Annotate จากนั้นเลือก Area… แล้วระบุข้อความที่ต้องการ   ผู้เขียนหวังว่าบทความนี้จะเป็นประโยชน์สำหรับผู้ที่สนใจในการแสดงภาพข้อมูล (Data Visualization) ให้สามารถสร้างแผนภูมิเรดาร์ที่สวยงามนี้ เพื่อแสดงการเปรียบเทียบและวิเคราะห์จุดเด่นและจุดด้อยของตัวชี้วัดได้อย่างมีประสิทธิภาพยิ่งขึ้น  เนื้อหาโดย อังคณา พรหมราชตรวจทานและปรับปรุงโดย ดวงใจ จิตคงชื่น...
28 December 2023

บทความ

ทำความรู้จักแผนภูมิปฏิทินความร้อน Calendar Heatmaps
กลับมาอีกครั้งกับบทความเกี่ยวกับ Data Visualization ซึ่งในครั้งนี้จะเป็นการนำเสนอการประยุกต์ใช้งานแผนภูมิความร้อนกับข้อมูลอนุกรมเวลาให้ออกมาเป็นรูปแบบแผนภูมิความร้อนชนิดหนึ่งที่เรียกว่า แผนภูมิปฏิทินความร้อน (Calendar Heatmaps) ก่อนอื่น ๆ เลย เรามาทำความรู้จักเบื้องต้นเกี่ยวกับแผนภูมิความร้อน (Heatmaps) กัน กำเนิดแผนภูมิความร้อน ตัวอย่างสำคัญที่มีการใช้แผนภูมิความร้อนนี้ถูกทำขึ้นโดย Toussaint Loua ในปี 1873 เพื่อติดตามค่าสถิติทางสังคม เช่น เชื้อชาติ ต้นกำเนิด อายุ ในปารีส ทั้งนี้ในแผนภูมิความร้อนนี้ประกอบไปด้วยเขตพื้นที่รายแถวของปารีสเทียบกับค่าสถิติทางสังคมกว่า 30 ค่า โดยใช้สีทั้งหมด 4 สี คือ สีขาว สีน้ำเงิน สีเหลือง และ สีแดง ในการบ่งบอกถึงค่าต่าง ๆ แทนตัวเลข ตัวอย่างสำคัญที่มีการใช้แผนภูมิความร้อนนี้ถูกทำขึ้นโดย Toussaint Loua[NP1] [AC2]  ในปี 1873 เพื่อติดตามค่าสถิติทางสังคม เช่น เชื้อชาติ ต้นกำเนิด อายุ ในปารีส ทั้งนี้ในแผนภูมิความร้อนนี้ประกอบไปด้วยเขตพื้นที่รายแถวของปารีสเทียบกับค่าสถิติทางสังคมกว่า 30 ค่า โดยใช้สีทั้งหมด 4 สี คือ สีขาว สีน้ำเงิน สีเหลือง และ สีแดง ในการบ่งบอกถึงค่าต่าง ๆ แทนตัวเลข ทำให้ผู้คนเริ่มนำเทคนิคของ Loua ไปใช้ในเป็นส่วนประกอบของการแสดงแผนภูมิแบบตารางมากขึ้นอย่างแพร่หลายในช่วงปีคริสต์ศักราชที่ 19 จนถึงปัจจุบัน ประเภทของแผนภูมิความร้อน เมื่อแผนภูมิความร้อน (Heatmaps) หรือแผนภูมิอุณหภูมิ ถูกใช้งานมากขึ้น จึงมีรูปแบบที่ถูกพัฒนาขึ้นอย่างต่อเนื่อง ซึ่งแบ่งออกเป็นหลัก ๆ ทั้งหมด 2 ชนิด ได้แก่ แผนภูมิความร้อนกับข้อมูลเชิงอนุกรมเวลา จากที่ผู้เขียนได้เกริ่นไว้ข้างต้นที่จะมีการประยุกต์ใช้ข้อมูลเชิงอนุกรมเวลากับแผนภูมิความร้อนเข้าด้วยกัน ซึ่งโดยส่วนใหญ่การแสดงแผนภาพข้อมูลอนุกรมเวลา (Time-Series Data) จะมาในรูปแบบของกราฟเส้น อาทิเช่น กราฟเส้นแสดงข้อมูลการขายในช่วง 30 ปี กราฟเส้นแสดงข้อมูลยอดผู้เข้าชมวีดีโอ หรือกราฟหลากเส้นแสดงยอดขายตามปีเปรียบเทียบกับเดือน ซึ่งกราฟเส้นนี้นอกจากจะแสดงข้อมูลและเปรียบเทียบข้อมูล ยังแสดงถึงแนวโน้มในอนาคตหรือความสม่ำเสมอที่เกิดขึ้นในช่วงเวลาต่าง ๆ อย่างไรก็ตามการแสดงข้อมูลในเชิงอนุกรมเวลา อาจจะมีอุปสรรคในเชิงของความละเอียดของเวลา การจัดทำกราฟเส้นอาจไม่ตอบโจทย์หรือยากในการสังเกตและวิเคราะห์แนวโน้มเมื่อลงลึกถึงข้อมูลรายวัน ดังนั้นผู้เขียนจึงอยากจะให้ทุกท่านได้รู้จักกับ “แผนภูมิปฏิทินความร้อน” แผนภูมิปฏิทินความร้อน การเลือกใช้แผนภูมิปฏิทินความร้อนเพื่อนำเสนอข้อมูลจำเป็นต้องคำนึงถึงสิ่งที่อยากจะนำเสนอ หากเราต้องการนำเสนอข้อมูลอนุกรมเชิงเวลาในลักษณะรายวัน การใช้แผนภูมิปฏิทินความร้อนมาประยุกต์จึงเป็นอีกวิธีที่สามารถนำไปใช้งาน อาทิเช่น การแสดงการมีส่วนร่วมในโปรเจคบนเว็บไซต์ GitHub (ภาพที่ 4 บน) ว่ามีการทำงานหรือสนับสนุนมากน้อยเพียงใด หรือ การแสดงจำนวนอุบัติเหตุตามช่วงเวลาในแต่ละวันของสัปดาห์ (ภาพที่ 4 ล่าง) จะเห็นได้ว่าการแสดงข้อมูลแบบประยุกต์แผนภูมิความร้อนเข้าด้วยกันกับข้อมูลอนุกรมเวลา ก็ยังสามารถสังเกตและวิเคราะห์แนวโน้มของข้อมูลที่แสดงบนกราฟได้อีกด้วย ทั้งนี้ผู้เขียนจึงขอยกตัวอย่างการประยุกต์ข้อมูลอนุกรมเวลาเข้ากับแผนภูมิความร้อน โดยจะแสดงเป็นแผนภูมิปฏิทินความร้อน ซึ่งข้อมูลที่ผู้เขียนเลือกนำมาใช้คือข้อมูล PM2.5 ในปี 2022 ทุกจุดตรวจจากเว็บไซต์ Air4Thai กรมควบคุมมลพิษ ซึ่งทางผู้เขียนได้มีการจัดการข้อมูลให้สะดวกต่อการจัดทำแผนภูมิข้อมูลในรูปแบบปฏิทิน จากข้อมูลที่ผู้เขียนนำมาใช้แสดงในแผนภูมิปฏิทินนี้ สามารถสังเกตได้ว่าในช่วงเดือนพฤษภาคมจนถึงกลางเดือนตุลาคมมีปริมาณค่าฝุ่น PM2.5 ที่ค่อนข้างน้อยเมื่อเทียบกับเดือนอื่นๆ ซึ่งในช่วงต้นปีที่มีการเปลี่ยนฤดูเป็นฤดูหนาว เช่น เดือนมกราคมและเดือนกุมภาพันธ์จะมีค่า PM2.5 ที่ค่อนข้างสูง และในส่วนท้ายปีเดือนพฤศจิกายนและเดือนธันวาคมเริ่มมีแนวโน้มการเพิ่มขึ้นของปริมาณฝุ่น PM2.5 ซึ่งมีความน่าจะเป็นที่จะลามไปถึงเดือนมกราคมและเดือนกุมภาพันธ์ในปี 2023 ข้อควรระวังในการใช้งานแผนภูมิปฏิทินความร้อน อย่างไรก็ตามการจัดทำแผนภูมิความร้อนก็ยังมีข้อเสียในบางครั้ง การใช้แผนภูมิความร้อนที่ค่าของข้อมูลเป็นการไล่ระดับสีแทนค่าของช่วงข้อมูลอาจทำให้บางจุดยากต่อการเปรียบเทียบ สำหรับข้อมูลที่มีค่าใกล้เคียงกันการมองด้วยสายตาอาจไม่สามารถพบเจอความแตกต่างได้ ดังนั้นการจัดทำช่วงค่าข้อมูลจึงเป็นทางเลือกอีกทางหนึ่งสำหรับการใช้แผนภูมิความร้อน หรือการเลือกเฉดสีที่ต่างกันมาก ๆ เช่น น้ำเงินกับแดง เหลืองกับม่วง เป็นต้น โดยผู้เขียนก็อยากจะแนะนำเครื่องมือหนึ่งในการเลือกใช้สีแบบต่าง ๆ เครื่องมือนั้นก็คือ Colorbrewer ในบทความนี้ เราได้ทำการสำรวจโลกของ ‘แผนภูมิปฏิทินความร้อน' หรือ ‘Calendar Heatmaps' อย่างละเอียด ตั้งแต่ประวัติของมัน การประยุกต์ใช้ จะเห็นได้ว่าแผนภูมิความร้อนไม่เพียงแต่เป็นเครื่องมือที่มีประสิทธิภาพในการสื่อสารข้อมูล แต่ยังสามารถเปิดเผยแนวโน้มและรูปแบบที่ไม่คาดคิดได้อีกด้วย ความสามารถในการวิเคราะห์และนำเสนอข้อมูลเชิงลึกอย่างที่เราได้พูดถึงในบทความนี้ จะช่วยให้คุณเข้าใจว่าข้อมูลสามารถถูกเปลี่ยนเป็นข้อมูลที่มีคุณค่าและมีอิทธิพลได้อย่างไร เราหวังว่าคุณจะได้แรงบันดาลใจและความรู้ใหม่ๆ จากบทความนี้ และนำไปประยุกต์ใช้ในงานของคุณเอง อย่าลืมติดตามเราสำหรับบทความต่อไป ที่จะพาคุณไปสำรวจเทคนิคการวิเคราะห์ข้อมูลและการนำเสนอข้อมูลอื่น ๆ ที่น่าตื่นเต้นไม่แพ้กัน ที่นี่ เราจะช่วยให้คุณเข้าถึงเครื่องมือและทักษะใหม่ ๆ ในการเปลี่ยนข้อมูลเป็นมูลค่าและเรื่องราวที่น่าจดจำ เนื้อหาโดย อมร โชคชัยสิริภักดีตรวจทานและปรับปรุงโดย นววิทย์ พงศ์อนันต์ สำหรับผู้ที่สนใจขึ้นตอนการจัดทำแผนภูมิสามารถศึกษาได้จากบทความดังนี้ เอกสารอ้างอิง
25 December 2023

บทความ

Bamboolib: หนึ่งใน Python Library ที่มีประโยชน์เป็นอย่างมากสำหรับนักวิเคราะห์ข้อมูลมือใหม่
Python Bamboolib หนึ่งใน Library ที่จะทำให้คุณมีความรู้สึกว่า ทำไมเราถึงไม่รู้จักเครื่องมือนี้มาก่อน ทำให้ผู้ใดก็สามารถทำการวิเคราะห์ข้อมูลใน Python ได้ โดยที่ไม่จำเป็นต้องเป็นโปรแกรมเมอร์ ผู้ใช้งานสามารถใช้ประโยชน์ของ Bamboolib ได้หลากหลาย ไม่ว่าจะเป็น การเตรียมข้อมูล (Data Preparation)  การจัดการข้อมูล เพื่อให้สามารถนำไปใช้ประโยชน์ได้ (Data Transformation) การแสดงผลข้อมูล (Data Visualization) และ การสำรวจข้อมูลเบื้องต้น (Data Exploration)
20 September 2023
PDPA Icon

We use cookies to optimize your browsing experience and improve our website’s performance. Learn more at our Privacy Policy and adjust your cookie settings at Settings

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as needed, except for necessary cookies.

Accept all
Manage Consent Preferences
  • Strictly Necessary Cookies
    Always Active

    This type of cookie is essential for providing services on the website of the Personal Data Protection Committee Office, allowing you to access various parts of the site. It also helps remember information you have previously provided through the website. Disabling this type of cookie will result in your inability to use key services of the Personal Data Protection Committee Office that require cookies to function.
    Cookies Details

  • Performance Cookies

    This type of cookie helps the Big Data Institute (Public Organization) understand user interactions with its website services, including which pages or areas of the site are most popular, as well as analyze other related data. The Big Data Institute (Public Organization) also uses this information to improve website performance and gain a better understanding of user behavior. Although the data collected by these cookies is non-identifiable and used solely for statistical analysis, disabling them will prevent the Big Data Institute (Public Organization) from knowing the number of website visitors and from evaluating the quality of its services.

  • Functional Cookies

    This type of cookie enables the Big Data Institute (Public Organization)’s website to remember the choices you have made and deliver enhanced features and content tailored to your usage. For example, it can remember your username or changes you have made to font sizes or other customizable settings on the page. Disabling these cookies may result in the website not functioning properly.

  • Targeting Cookies

    "This type of cookie helps the Big Data Institute (Public Organization) understand user interactions with its website services, including which pages or areas of the site are most popular, as well as analyze other related data. The Big Data Institute (Public Organization) also uses this information to improve website performance and gain a better understanding of user behavior. Although the data collected by these cookies is non-identifiable and used solely for statistical analysis, disabling them will prevent the Big Data Institute (Public Organization) from knowing the number of website visitors and from evaluating the quality of its services.

Save settings
This site is registered on wpml.org as a development site. Switch to a production site key to remove this banner.